liuganghuggingface commited on
Commit
71df9ee
1 Parent(s): 33e9c2f

Update graph_decoder/diffusion_utils.py

Browse files
Files changed (1) hide show
  1. graph_decoder/diffusion_utils.py +392 -392
graph_decoder/diffusion_utils.py CHANGED
@@ -13,40 +13,40 @@ def dict_to_namespace(d):
13
  **{k: dict_to_namespace(v) if isinstance(v, dict) else v for k, v in d.items()}
14
  )
15
 
16
- # class DataInfos:
17
- # def __init__(self, meta_filename="data.meta.json"):
18
- # self.all_targets = ['CH4', 'CO2', 'H2', 'N2', 'O2']
19
- # self.task_type = "gas_permeability"
20
- # if os.path.exists(meta_filename):
21
- # with open(meta_filename, "r") as f:
22
- # meta_dict = json.load(f)
23
- # else:
24
- # raise FileNotFoundError(f"Meta file {meta_filename} not found.")
25
-
26
- # self.active_atoms = meta_dict["active_atoms"]
27
- # self.max_n_nodes = meta_dict["max_node"]
28
- # self.original_max_n_nodes = meta_dict["max_node"]
29
- # self.n_nodes = torch.Tensor(meta_dict["n_atoms_per_mol_dist"])
30
- # self.edge_types = torch.Tensor(meta_dict["bond_type_dist"])
31
- # self.transition_E = torch.Tensor(meta_dict["transition_E"])
32
-
33
- # self.atom_decoder = meta_dict["active_atoms"]
34
- # node_types = torch.Tensor(meta_dict["atom_type_dist"])
35
- # active_index = (node_types > 0).nonzero().squeeze()
36
- # self.node_types = torch.Tensor(meta_dict["atom_type_dist"])[active_index]
37
- # self.nodes_dist = DistributionNodes(self.n_nodes)
38
- # self.active_index = active_index
39
-
40
- # val_len = 3 * self.original_max_n_nodes - 2
41
- # meta_val = torch.Tensor(meta_dict["valencies"])
42
- # self.valency_distribution = torch.zeros(val_len)
43
- # val_len = min(val_len, len(meta_val))
44
- # self.valency_distribution[:val_len] = meta_val[:val_len]
45
- # ## for all
46
- # self.input_dims = {"X": len(self.active_atoms), "E": 5, "y": 5}
47
- # self.output_dims = {"X": len(self.active_atoms), "E": 5, "y": 5}
48
- # # self.input_dims = {"X": 11, "E": 5, "y": 5}
49
- # # self.output_dims = {"X": 11, "E": 5, "y": 5}
50
 
51
  def load_config(config_path, data_meta_info_path):
52
  if not os.path.exists(config_path):
@@ -128,400 +128,400 @@ class PlaceHolder:
128
  # return E
129
 
130
 
131
- # #### diffusion utils
132
- # class DistributionNodes:
133
- # def __init__(self, histogram):
134
- # """Compute the distribution of the number of nodes in the dataset, and sample from this distribution.
135
- # historgram: dict. The keys are num_nodes, the values are counts
136
- # """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
 
138
- # if type(histogram) == dict:
139
- # max_n_nodes = max(histogram.keys())
140
- # prob = torch.zeros(max_n_nodes + 1)
141
- # for num_nodes, count in histogram.items():
142
- # prob[num_nodes] = count
143
- # else:
144
- # prob = histogram
145
-
146
- # self.prob = prob / prob.sum()
147
- # self.m = torch.distributions.Categorical(prob)
148
-
149
- # def sample_n(self, n_samples, device):
150
- # idx = self.m.sample((n_samples,))
151
- # return idx.to(device)
152
-
153
- # def log_prob(self, batch_n_nodes):
154
- # assert len(batch_n_nodes.size()) == 1
155
- # p = self.prob.to(batch_n_nodes.device)
156
-
157
- # probas = p[batch_n_nodes]
158
- # log_p = torch.log(probas + 1e-30)
159
- # return log_p
160
-
161
-
162
- # class PredefinedNoiseScheduleDiscrete(torch.nn.Module):
163
- # def __init__(self, noise_schedule, timesteps):
164
- # super(PredefinedNoiseScheduleDiscrete, self).__init__()
165
- # self.timesteps = timesteps
166
-
167
- # betas = cosine_beta_schedule_discrete(timesteps)
168
- # self.register_buffer("betas", torch.from_numpy(betas).float())
169
-
170
- # # 0.9999
171
- # self.alphas = 1 - torch.clamp(self.betas, min=0, max=1)
172
-
173
- # log_alpha = torch.log(self.alphas)
174
- # log_alpha_bar = torch.cumsum(log_alpha, dim=0)
175
- # self.alphas_bar = torch.exp(log_alpha_bar)
176
-
177
- # def forward(self, t_normalized=None, t_int=None):
178
- # assert int(t_normalized is None) + int(t_int is None) == 1
179
- # if t_int is None:
180
- # t_int = torch.round(t_normalized * self.timesteps)
181
- # self.betas = self.betas.type_as(t_int)
182
- # return self.betas[t_int.long()]
183
-
184
- # def get_alpha_bar(self, t_normalized=None, t_int=None):
185
- # assert int(t_normalized is None) + int(t_int is None) == 1
186
- # if t_int is None:
187
- # t_int = torch.round(t_normalized * self.timesteps)
188
- # self.alphas_bar = self.alphas_bar.type_as(t_int)
189
- # return self.alphas_bar[t_int.long()]
190
-
191
-
192
- # # class DiscreteUniformTransition:
193
- # # def __init__(self, x_classes: int, e_classes: int, y_classes: int):
194
- # # self.X_classes = x_classes
195
- # # self.E_classes = e_classes
196
- # # self.y_classes = y_classes
197
- # # self.u_x = torch.ones(1, self.X_classes, self.X_classes)
198
- # # if self.X_classes > 0:
199
- # # self.u_x = self.u_x / self.X_classes
200
-
201
- # # self.u_e = torch.ones(1, self.E_classes, self.E_classes)
202
- # # if self.E_classes > 0:
203
- # # self.u_e = self.u_e / self.E_classes
204
-
205
- # # self.u_y = torch.ones(1, self.y_classes, self.y_classes)
206
- # # if self.y_classes > 0:
207
- # # self.u_y = self.u_y / self.y_classes
208
-
209
- # # def get_Qt(self, beta_t, device, X=None, flatten_e=None):
210
- # # """Returns one-step transition matrices for X and E, from step t - 1 to step t.
211
- # # Qt = (1 - beta_t) * I + beta_t / K
212
-
213
- # # beta_t: (bs) noise level between 0 and 1
214
- # # returns: qx (bs, dx, dx), qe (bs, de, de), qy (bs, dy, dy).
215
- # # """
216
- # # beta_t = beta_t.unsqueeze(1)
217
- # # beta_t = beta_t.to(device)
218
- # # self.u_x = self.u_x.to(device)
219
- # # self.u_e = self.u_e.to(device)
220
- # # self.u_y = self.u_y.to(device)
221
-
222
- # # q_x = beta_t * self.u_x + (1 - beta_t) * torch.eye(
223
- # # self.X_classes, device=device
224
- # # ).unsqueeze(0)
225
- # # q_e = beta_t * self.u_e + (1 - beta_t) * torch.eye(
226
- # # self.E_classes, device=device
227
- # # ).unsqueeze(0)
228
- # # q_y = beta_t * self.u_y + (1 - beta_t) * torch.eye(
229
- # # self.y_classes, device=device
230
- # # ).unsqueeze(0)
231
-
232
- # # return PlaceHolder(X=q_x, E=q_e, y=q_y)
233
-
234
- # # def get_Qt_bar(self, alpha_bar_t, device, X=None, flatten_e=None):
235
- # # """Returns t-step transition matrices for X and E, from step 0 to step t.
236
- # # Qt = prod(1 - beta_t) * I + (1 - prod(1 - beta_t)) / K
237
-
238
- # # alpha_bar_t: (bs) Product of the (1 - beta_t) for each time step from 0 to t.
239
- # # returns: qx (bs, dx, dx), qe (bs, de, de), qy (bs, dy, dy).
240
- # # """
241
- # # alpha_bar_t = alpha_bar_t.unsqueeze(1)
242
- # # alpha_bar_t = alpha_bar_t.to(device)
243
- # # self.u_x = self.u_x.to(device)
244
- # # self.u_e = self.u_e.to(device)
245
- # # self.u_y = self.u_y.to(device)
246
-
247
- # # q_x = (
248
- # # alpha_bar_t * torch.eye(self.X_classes, device=device).unsqueeze(0)
249
- # # + (1 - alpha_bar_t) * self.u_x
250
- # # )
251
- # # q_e = (
252
- # # alpha_bar_t * torch.eye(self.E_classes, device=device).unsqueeze(0)
253
- # # + (1 - alpha_bar_t) * self.u_e
254
- # # )
255
- # # q_y = (
256
- # # alpha_bar_t * torch.eye(self.y_classes, device=device).unsqueeze(0)
257
- # # + (1 - alpha_bar_t) * self.u_y
258
- # # )
259
-
260
- # # return PlaceHolder(X=q_x, E=q_e, y=q_y)
261
-
262
-
263
- # class MarginalTransition:
264
- # def __init__(
265
- # self, x_marginals, e_marginals, xe_conditions, ex_conditions, y_classes, n_nodes
266
- # ):
267
- # self.X_classes = len(x_marginals)
268
- # self.E_classes = len(e_marginals)
269
  # self.y_classes = y_classes
270
- # self.x_marginals = x_marginals # Dx
271
- # self.e_marginals = e_marginals # Dx, De
272
- # self.xe_conditions = xe_conditions
273
- # # print('e_marginals.dtype', e_marginals.dtype)
274
- # # print('x_marginals.dtype', x_marginals.dtype)
275
- # # print('xe_conditions.dtype', xe_conditions.dtype)
276
-
277
- # self.u_x = (
278
- # x_marginals.unsqueeze(0).expand(self.X_classes, -1).unsqueeze(0)
279
- # ) # 1, Dx, Dx
280
- # self.u_e = (
281
- # e_marginals.unsqueeze(0).expand(self.E_classes, -1).unsqueeze(0)
282
- # ) # 1, De, De
283
- # self.u_xe = xe_conditions.unsqueeze(0) # 1, Dx, De
284
- # self.u_ex = ex_conditions.unsqueeze(0) # 1, De, Dx
285
- # self.u = self.get_union_transition(
286
- # self.u_x, self.u_e, self.u_xe, self.u_ex, n_nodes
287
- # ) # 1, Dx + n*De, Dx + n*De
288
-
289
- # def get_union_transition(self, u_x, u_e, u_xe, u_ex, n_nodes):
290
- # u_e = u_e.repeat(1, n_nodes, n_nodes) # (1, n*de, n*de)
291
- # u_xe = u_xe.repeat(1, 1, n_nodes) # (1, dx, n*de)
292
- # u_ex = u_ex.repeat(1, n_nodes, 1) # (1, n*de, dx)
293
- # u0 = torch.cat([u_x, u_xe], dim=2) # (1, dx, dx + n*de)
294
- # u1 = torch.cat([u_ex, u_e], dim=2) # (1, n*de, dx + n*de)
295
- # u = torch.cat([u0, u1], dim=1) # (1, dx + n*de, dx + n*de)
296
- # return u
297
-
298
- # def index_edge_margin(self, X, q_e, n_bond=5):
299
- # # q_e: (bs, dx, de) --> (bs, n, de)
300
- # bs, n, n_atom = X.shape
301
- # node_indices = X.argmax(-1) # (bs, n)
302
- # ind = node_indices[:, :, None].expand(bs, n, n_bond)
303
- # q_e = torch.gather(q_e, 1, ind)
304
- # return q_e
305
-
306
- # def get_Qt(self, beta_t, device):
307
  # """Returns one-step transition matrices for X and E, from step t - 1 to step t.
308
  # Qt = (1 - beta_t) * I + beta_t / K
309
- # beta_t: (bs)
310
- # returns: q (bs, d0, d0)
311
- # """
312
- # bs = beta_t.size(0)
313
- # d0 = self.u.size(-1)
314
- # self.u = self.u.to(device)
315
- # u = self.u.expand(bs, d0, d0)
316
 
 
 
 
 
317
  # beta_t = beta_t.to(device)
318
- # beta_t = beta_t.view(bs, 1, 1)
319
- # q = beta_t * u + (1 - beta_t) * torch.eye(d0, device=device, dtype=self.u.dtype).unsqueeze(0)
320
-
321
- # return PlaceHolder(X=q, E=None, y=None)
322
-
323
- # def get_Qt_bar(self, alpha_bar_t, device):
 
 
 
 
 
 
 
 
 
 
 
324
  # """Returns t-step transition matrices for X and E, from step 0 to step t.
325
- # Qt = prod(1 - beta_t) * I + (1 - prod(1 - beta_t)) * K
326
- # alpha_bar_t: (bs, 1) roduct of the (1 - beta_t) for each time step from 0 to t.
327
- # returns: q (bs, d0, d0)
 
328
  # """
329
- # bs = alpha_bar_t.size(0)
330
- # d0 = self.u.size(-1)
331
  # alpha_bar_t = alpha_bar_t.to(device)
332
- # alpha_bar_t = alpha_bar_t.view(bs, 1, 1)
333
- # self.u = self.u.to(device)
334
- # q = (
335
- # alpha_bar_t * torch.eye(d0, device=device, dtype=self.u.dtype).unsqueeze(0)
336
- # + (1 - alpha_bar_t) * self.u
 
 
 
 
 
 
 
 
 
 
337
  # )
338
 
339
- # return PlaceHolder(X=q, E=None, y=None)
340
-
341
-
342
- # def sum_except_batch(x):
343
- # return x.reshape(x.size(0), -1).sum(dim=-1)
344
-
345
- # def assert_correctly_masked(variable, node_mask):
346
- # assert (
347
- # variable * (1 - node_mask.long())
348
- # ).abs().max().item() < 1e-4, "Variables not masked properly."
349
-
350
- # def cosine_beta_schedule_discrete(timesteps, s=0.008):
351
- # """Cosine schedule as proposed in https://openreview.net/forum?id=-NEXDKk8gZ."""
352
- # steps = timesteps + 2
353
- # x = np.linspace(0, steps, steps)
354
-
355
- # alphas_cumprod = np.cos(0.5 * np.pi * ((x / steps) + s) / (1 + s)) ** 2
356
- # alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
357
- # alphas = alphas_cumprod[1:] / alphas_cumprod[:-1]
358
- # betas = 1 - alphas
359
- # return betas.squeeze()
360
-
361
-
362
- # def sample_discrete_features(probX, probE, node_mask, step=None, add_nose=True):
363
- # """Sample features from multinomial distribution with given probabilities (probX, probE, proby)
364
- # :param probX: bs, n, dx_out node features
365
- # :param probE: bs, n, n, de_out edge features
366
- # :param proby: bs, dy_out global features.
367
- # """
368
- # bs, n, _ = probX.shape
369
-
370
- # # Noise X
371
- # # The masked rows should define probability distributions as well
372
- # probX[~node_mask] = 1 / probX.shape[-1]
373
-
374
- # # Flatten the probability tensor to sample with multinomial
375
- # probX = probX.reshape(bs * n, -1) # (bs * n, dx_out)
376
-
377
- # # Sample X
378
- # probX = probX.clamp_min(1e-5)
379
- # probX = probX / probX.sum(dim=-1, keepdim=True)
380
- # X_t = probX.multinomial(1) # (bs * n, 1)
381
- # X_t = X_t.reshape(bs, n) # (bs, n)
382
-
383
- # # Noise E
384
- # # The masked rows should define probability distributions as well
385
- # inverse_edge_mask = ~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2))
386
- # diag_mask = torch.eye(n).unsqueeze(0).expand(bs, -1, -1)
387
-
388
- # probE[inverse_edge_mask] = 1 / probE.shape[-1]
389
- # probE[diag_mask.bool()] = 1 / probE.shape[-1]
390
- # probE = probE.reshape(bs * n * n, -1) # (bs * n * n, de_out)
391
- # probE = probE.clamp_min(1e-5)
392
- # probE = probE / probE.sum(dim=-1, keepdim=True)
393
-
394
- # # Sample E
395
- # E_t = probE.multinomial(1).reshape(bs, n, n) # (bs, n, n)
396
- # E_t = torch.triu(E_t, diagonal=1)
397
- # E_t = E_t + torch.transpose(E_t, 1, 2)
398
-
399
- # return PlaceHolder(X=X_t, E=E_t, y=torch.zeros(bs, 0).type_as(X_t))
400
-
401
-
402
- # def mask_distributions(true_X, true_E, pred_X, pred_E, node_mask):
403
- # # Add a small value everywhere to avoid nans
404
- # pred_X = pred_X.clamp_min(1e-5)
405
- # pred_X = pred_X / torch.sum(pred_X, dim=-1, keepdim=True)
406
-
407
- # pred_E = pred_E.clamp_min(1e-5)
408
- # pred_E = pred_E / torch.sum(pred_E, dim=-1, keepdim=True)
409
-
410
- # # Set masked rows to arbitrary distributions, so it doesn't contribute to loss
411
- # row_X = torch.ones(true_X.size(-1), dtype=true_X.dtype, device=true_X.device)
412
- # row_E = torch.zeros(
413
- # true_E.size(-1), dtype=true_E.dtype, device=true_E.device
414
- # ).clamp_min(1e-5)
415
- # row_E[0] = 1.0
416
-
417
- # diag_mask = ~torch.eye(
418
- # node_mask.size(1), device=node_mask.device, dtype=torch.bool
419
- # ).unsqueeze(0)
420
- # true_X[~node_mask] = row_X
421
- # true_E[~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2) * diag_mask), :] = row_E
422
- # pred_X[~node_mask] = row_X.type_as(pred_X)
423
- # pred_E[~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2) * diag_mask), :] = (
424
- # row_E.type_as(pred_E)
425
- # )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426
 
427
- # return true_X, true_E, pred_X, pred_E
428
 
429
 
430
- # def forward_diffusion(X, X_t, Qt, Qsb, Qtb, X_dim):
431
- # bs, n, d = X.shape
432
 
433
- # Qt_X_T = torch.transpose(Qt.X, -2, -1) # (bs, d, d)
434
- # left_term = X_t @ Qt_X_T # (bs, N, d)
435
- # right_term = X @ Qsb.X # (bs, N, d)
436
 
437
- # numerator = left_term * right_term # (bs, N, d)
438
- # denominator = X @ Qtb.X # (bs, N, d) @ (bs, d, d) = (bs, N, d)
439
- # denominator = denominator * X_t
440
 
441
- # num_X = numerator[:, :, :X_dim]
442
- # num_E = numerator[:, :, X_dim:].reshape(bs, n * n, -1)
443
 
444
- # deno_X = denominator[:, :, :X_dim]
445
- # deno_E = denominator[:, :, X_dim:].reshape(bs, n * n, -1)
446
 
447
- # denominator = denominator.unsqueeze(-1) # (bs, N, 1)
448
 
449
- # deno_X = deno_X.sum(dim=-1, keepdim=True)
450
- # deno_E = deno_E.sum(dim=-1, keepdim=True)
451
 
452
- # deno_X[deno_X == 0.0] = 1
453
- # deno_E[deno_E == 0.0] = 1
454
- # prob_X = num_X / deno_X
455
- # prob_E = num_E / deno_E
456
 
457
- # prob_E = prob_E / prob_E.sum(dim=-1, keepdim=True)
458
- # prob_X = prob_X / prob_X.sum(dim=-1, keepdim=True)
459
- # return PlaceHolder(X=prob_X, E=prob_E, y=None)
460
 
461
 
462
- # def reverse_diffusion(predX_0, X_t, Qt, Qsb, Qtb):
463
- # """M: X or E
464
- # Compute xt @ Qt.T * x0 @ Qsb / x0 @ Qtb @ xt.T for each possible value of x0
465
- # X_t: bs, n, dt or bs, n, n, dt
466
- # Qt: bs, d_t-1, dt
467
- # Qsb: bs, d0, d_t-1
468
- # Qtb: bs, d0, dt.
469
- # """
470
- # Qt_T = Qt.transpose(-1, -2) # bs, N, dt
471
- # assert Qt.dim() == 3
472
- # left_term = X_t @ Qt_T # bs, N, d_t-1
473
- # right_term = predX_0 @ Qsb
474
- # numerator = left_term * right_term # bs, N, d_t-1
475
 
476
- # denominator = Qtb @ X_t.transpose(-1, -2) # bs, d0, N
477
- # denominator = denominator.transpose(-1, -2) # bs, N, d0
478
- # return numerator / denominator.clamp_min(1e-5)
479
 
480
- # def reverse_tensor(x):
481
- # return x[torch.arange(x.size(0) - 1, -1, -1)]
482
 
483
- # def sample_discrete_feature_noise(limit_dist, node_mask):
484
- # """Sample from the limit distribution of the diffusion process"""
485
- # bs, n_max = node_mask.shape
486
- # x_limit = limit_dist.X[None, None, :].expand(bs, n_max, -1)
487
- # x_limit = x_limit.to(node_mask.device)
488
 
489
- # U_X = x_limit.flatten(end_dim=-2).multinomial(1).reshape(bs, n_max)
490
- # U_X = F.one_hot(U_X.long(), num_classes=x_limit.shape[-1]).type_as(x_limit)
491
 
492
- # e_limit = limit_dist.E[None, None, None, :].expand(bs, n_max, n_max, -1)
493
- # U_E = e_limit.flatten(end_dim=-2).multinomial(1).reshape(bs, n_max, n_max)
494
- # U_E = F.one_hot(U_E.long(), num_classes=e_limit.shape[-1]).type_as(x_limit)
495
 
496
- # U_X = U_X.to(node_mask.device)
497
- # U_E = U_E.to(node_mask.device)
498
 
499
- # # Get upper triangular part of edge noise, without main diagonal
500
- # upper_triangular_mask = torch.zeros_like(U_E)
501
- # indices = torch.triu_indices(row=U_E.size(1), col=U_E.size(2), offset=1)
502
- # upper_triangular_mask[:, indices[0], indices[1], :] = 1
503
 
504
- # U_E = U_E * upper_triangular_mask
505
- # U_E = U_E + torch.transpose(U_E, 1, 2)
506
 
507
- # assert (U_E == torch.transpose(U_E, 1, 2)).all()
508
- # return PlaceHolder(X=U_X, E=U_E, y=None).mask(node_mask)
509
 
510
 
511
- # def index_QE(X, q_e, n_bond=5):
512
- # bs, n, n_atom = X.shape
513
- # node_indices = X.argmax(-1) # (bs, n)
514
 
515
- # exp_ind1 = node_indices[:, :, None, None, None].expand(
516
- # bs, n, n_atom, n_bond, n_bond
517
- # )
518
- # exp_ind2 = node_indices[:, :, None, None, None].expand(bs, n, n, n_bond, n_bond)
519
 
520
- # q_e = torch.gather(q_e, 1, exp_ind1)
521
- # q_e = torch.gather(q_e, 2, exp_ind2) # (bs, n, n, n_bond, n_bond)
522
 
523
- # node_mask = X.sum(-1) != 0
524
- # no_edge = (~node_mask)[:, :, None] & (~node_mask)[:, None, :]
525
- # q_e[no_edge] = torch.tensor([1, 0, 0, 0, 0]).type_as(q_e)
526
 
527
- # return q_e
 
13
  **{k: dict_to_namespace(v) if isinstance(v, dict) else v for k, v in d.items()}
14
  )
15
 
16
+ class DataInfos:
17
+ def __init__(self, meta_filename="data.meta.json"):
18
+ self.all_targets = ['CH4', 'CO2', 'H2', 'N2', 'O2']
19
+ self.task_type = "gas_permeability"
20
+ if os.path.exists(meta_filename):
21
+ with open(meta_filename, "r") as f:
22
+ meta_dict = json.load(f)
23
+ else:
24
+ raise FileNotFoundError(f"Meta file {meta_filename} not found.")
25
+
26
+ self.active_atoms = meta_dict["active_atoms"]
27
+ self.max_n_nodes = meta_dict["max_node"]
28
+ self.original_max_n_nodes = meta_dict["max_node"]
29
+ self.n_nodes = torch.Tensor(meta_dict["n_atoms_per_mol_dist"])
30
+ self.edge_types = torch.Tensor(meta_dict["bond_type_dist"])
31
+ self.transition_E = torch.Tensor(meta_dict["transition_E"])
32
+
33
+ self.atom_decoder = meta_dict["active_atoms"]
34
+ node_types = torch.Tensor(meta_dict["atom_type_dist"])
35
+ active_index = (node_types > 0).nonzero().squeeze()
36
+ self.node_types = torch.Tensor(meta_dict["atom_type_dist"])[active_index]
37
+ self.nodes_dist = DistributionNodes(self.n_nodes)
38
+ self.active_index = active_index
39
+
40
+ val_len = 3 * self.original_max_n_nodes - 2
41
+ meta_val = torch.Tensor(meta_dict["valencies"])
42
+ self.valency_distribution = torch.zeros(val_len)
43
+ val_len = min(val_len, len(meta_val))
44
+ self.valency_distribution[:val_len] = meta_val[:val_len]
45
+ ## for all
46
+ self.input_dims = {"X": len(self.active_atoms), "E": 5, "y": 5}
47
+ self.output_dims = {"X": len(self.active_atoms), "E": 5, "y": 5}
48
+ # self.input_dims = {"X": 11, "E": 5, "y": 5}
49
+ # self.output_dims = {"X": 11, "E": 5, "y": 5}
50
 
51
  def load_config(config_path, data_meta_info_path):
52
  if not os.path.exists(config_path):
 
128
  # return E
129
 
130
 
131
+ #### diffusion utils
132
+ class DistributionNodes:
133
+ def __init__(self, histogram):
134
+ """Compute the distribution of the number of nodes in the dataset, and sample from this distribution.
135
+ historgram: dict. The keys are num_nodes, the values are counts
136
+ """
137
+
138
+ if type(histogram) == dict:
139
+ max_n_nodes = max(histogram.keys())
140
+ prob = torch.zeros(max_n_nodes + 1)
141
+ for num_nodes, count in histogram.items():
142
+ prob[num_nodes] = count
143
+ else:
144
+ prob = histogram
145
+
146
+ self.prob = prob / prob.sum()
147
+ self.m = torch.distributions.Categorical(prob)
148
+
149
+ def sample_n(self, n_samples, device):
150
+ idx = self.m.sample((n_samples,))
151
+ return idx.to(device)
152
+
153
+ def log_prob(self, batch_n_nodes):
154
+ assert len(batch_n_nodes.size()) == 1
155
+ p = self.prob.to(batch_n_nodes.device)
156
+
157
+ probas = p[batch_n_nodes]
158
+ log_p = torch.log(probas + 1e-30)
159
+ return log_p
160
+
161
+
162
+ class PredefinedNoiseScheduleDiscrete(torch.nn.Module):
163
+ def __init__(self, noise_schedule, timesteps):
164
+ super(PredefinedNoiseScheduleDiscrete, self).__init__()
165
+ self.timesteps = timesteps
166
+
167
+ betas = cosine_beta_schedule_discrete(timesteps)
168
+ self.register_buffer("betas", torch.from_numpy(betas).float())
169
+
170
+ # 0.9999
171
+ self.alphas = 1 - torch.clamp(self.betas, min=0, max=1)
172
+
173
+ log_alpha = torch.log(self.alphas)
174
+ log_alpha_bar = torch.cumsum(log_alpha, dim=0)
175
+ self.alphas_bar = torch.exp(log_alpha_bar)
176
+
177
+ def forward(self, t_normalized=None, t_int=None):
178
+ assert int(t_normalized is None) + int(t_int is None) == 1
179
+ if t_int is None:
180
+ t_int = torch.round(t_normalized * self.timesteps)
181
+ self.betas = self.betas.type_as(t_int)
182
+ return self.betas[t_int.long()]
183
+
184
+ def get_alpha_bar(self, t_normalized=None, t_int=None):
185
+ assert int(t_normalized is None) + int(t_int is None) == 1
186
+ if t_int is None:
187
+ t_int = torch.round(t_normalized * self.timesteps)
188
+ self.alphas_bar = self.alphas_bar.type_as(t_int)
189
+ return self.alphas_bar[t_int.long()]
190
+
191
 
192
+ # class DiscreteUniformTransition:
193
+ # def __init__(self, x_classes: int, e_classes: int, y_classes: int):
194
+ # self.X_classes = x_classes
195
+ # self.E_classes = e_classes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
  # self.y_classes = y_classes
197
+ # self.u_x = torch.ones(1, self.X_classes, self.X_classes)
198
+ # if self.X_classes > 0:
199
+ # self.u_x = self.u_x / self.X_classes
200
+
201
+ # self.u_e = torch.ones(1, self.E_classes, self.E_classes)
202
+ # if self.E_classes > 0:
203
+ # self.u_e = self.u_e / self.E_classes
204
+
205
+ # self.u_y = torch.ones(1, self.y_classes, self.y_classes)
206
+ # if self.y_classes > 0:
207
+ # self.u_y = self.u_y / self.y_classes
208
+
209
+ # def get_Qt(self, beta_t, device, X=None, flatten_e=None):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210
  # """Returns one-step transition matrices for X and E, from step t - 1 to step t.
211
  # Qt = (1 - beta_t) * I + beta_t / K
 
 
 
 
 
 
 
212
 
213
+ # beta_t: (bs) noise level between 0 and 1
214
+ # returns: qx (bs, dx, dx), qe (bs, de, de), qy (bs, dy, dy).
215
+ # """
216
+ # beta_t = beta_t.unsqueeze(1)
217
  # beta_t = beta_t.to(device)
218
+ # self.u_x = self.u_x.to(device)
219
+ # self.u_e = self.u_e.to(device)
220
+ # self.u_y = self.u_y.to(device)
221
+
222
+ # q_x = beta_t * self.u_x + (1 - beta_t) * torch.eye(
223
+ # self.X_classes, device=device
224
+ # ).unsqueeze(0)
225
+ # q_e = beta_t * self.u_e + (1 - beta_t) * torch.eye(
226
+ # self.E_classes, device=device
227
+ # ).unsqueeze(0)
228
+ # q_y = beta_t * self.u_y + (1 - beta_t) * torch.eye(
229
+ # self.y_classes, device=device
230
+ # ).unsqueeze(0)
231
+
232
+ # return PlaceHolder(X=q_x, E=q_e, y=q_y)
233
+
234
+ # def get_Qt_bar(self, alpha_bar_t, device, X=None, flatten_e=None):
235
  # """Returns t-step transition matrices for X and E, from step 0 to step t.
236
+ # Qt = prod(1 - beta_t) * I + (1 - prod(1 - beta_t)) / K
237
+
238
+ # alpha_bar_t: (bs) Product of the (1 - beta_t) for each time step from 0 to t.
239
+ # returns: qx (bs, dx, dx), qe (bs, de, de), qy (bs, dy, dy).
240
  # """
241
+ # alpha_bar_t = alpha_bar_t.unsqueeze(1)
 
242
  # alpha_bar_t = alpha_bar_t.to(device)
243
+ # self.u_x = self.u_x.to(device)
244
+ # self.u_e = self.u_e.to(device)
245
+ # self.u_y = self.u_y.to(device)
246
+
247
+ # q_x = (
248
+ # alpha_bar_t * torch.eye(self.X_classes, device=device).unsqueeze(0)
249
+ # + (1 - alpha_bar_t) * self.u_x
250
+ # )
251
+ # q_e = (
252
+ # alpha_bar_t * torch.eye(self.E_classes, device=device).unsqueeze(0)
253
+ # + (1 - alpha_bar_t) * self.u_e
254
+ # )
255
+ # q_y = (
256
+ # alpha_bar_t * torch.eye(self.y_classes, device=device).unsqueeze(0)
257
+ # + (1 - alpha_bar_t) * self.u_y
258
  # )
259
 
260
+ # return PlaceHolder(X=q_x, E=q_e, y=q_y)
261
+
262
+
263
+ class MarginalTransition:
264
+ def __init__(
265
+ self, x_marginals, e_marginals, xe_conditions, ex_conditions, y_classes, n_nodes
266
+ ):
267
+ self.X_classes = len(x_marginals)
268
+ self.E_classes = len(e_marginals)
269
+ self.y_classes = y_classes
270
+ self.x_marginals = x_marginals # Dx
271
+ self.e_marginals = e_marginals # Dx, De
272
+ self.xe_conditions = xe_conditions
273
+ # print('e_marginals.dtype', e_marginals.dtype)
274
+ # print('x_marginals.dtype', x_marginals.dtype)
275
+ # print('xe_conditions.dtype', xe_conditions.dtype)
276
+
277
+ self.u_x = (
278
+ x_marginals.unsqueeze(0).expand(self.X_classes, -1).unsqueeze(0)
279
+ ) # 1, Dx, Dx
280
+ self.u_e = (
281
+ e_marginals.unsqueeze(0).expand(self.E_classes, -1).unsqueeze(0)
282
+ ) # 1, De, De
283
+ self.u_xe = xe_conditions.unsqueeze(0) # 1, Dx, De
284
+ self.u_ex = ex_conditions.unsqueeze(0) # 1, De, Dx
285
+ self.u = self.get_union_transition(
286
+ self.u_x, self.u_e, self.u_xe, self.u_ex, n_nodes
287
+ ) # 1, Dx + n*De, Dx + n*De
288
+
289
+ def get_union_transition(self, u_x, u_e, u_xe, u_ex, n_nodes):
290
+ u_e = u_e.repeat(1, n_nodes, n_nodes) # (1, n*de, n*de)
291
+ u_xe = u_xe.repeat(1, 1, n_nodes) # (1, dx, n*de)
292
+ u_ex = u_ex.repeat(1, n_nodes, 1) # (1, n*de, dx)
293
+ u0 = torch.cat([u_x, u_xe], dim=2) # (1, dx, dx + n*de)
294
+ u1 = torch.cat([u_ex, u_e], dim=2) # (1, n*de, dx + n*de)
295
+ u = torch.cat([u0, u1], dim=1) # (1, dx + n*de, dx + n*de)
296
+ return u
297
+
298
+ def index_edge_margin(self, X, q_e, n_bond=5):
299
+ # q_e: (bs, dx, de) --> (bs, n, de)
300
+ bs, n, n_atom = X.shape
301
+ node_indices = X.argmax(-1) # (bs, n)
302
+ ind = node_indices[:, :, None].expand(bs, n, n_bond)
303
+ q_e = torch.gather(q_e, 1, ind)
304
+ return q_e
305
+
306
+ def get_Qt(self, beta_t, device):
307
+ """Returns one-step transition matrices for X and E, from step t - 1 to step t.
308
+ Qt = (1 - beta_t) * I + beta_t / K
309
+ beta_t: (bs)
310
+ returns: q (bs, d0, d0)
311
+ """
312
+ bs = beta_t.size(0)
313
+ d0 = self.u.size(-1)
314
+ self.u = self.u.to(device)
315
+ u = self.u.expand(bs, d0, d0)
316
+
317
+ beta_t = beta_t.to(device)
318
+ beta_t = beta_t.view(bs, 1, 1)
319
+ q = beta_t * u + (1 - beta_t) * torch.eye(d0, device=device, dtype=self.u.dtype).unsqueeze(0)
320
+
321
+ return PlaceHolder(X=q, E=None, y=None)
322
+
323
+ def get_Qt_bar(self, alpha_bar_t, device):
324
+ """Returns t-step transition matrices for X and E, from step 0 to step t.
325
+ Qt = prod(1 - beta_t) * I + (1 - prod(1 - beta_t)) * K
326
+ alpha_bar_t: (bs, 1) roduct of the (1 - beta_t) for each time step from 0 to t.
327
+ returns: q (bs, d0, d0)
328
+ """
329
+ bs = alpha_bar_t.size(0)
330
+ d0 = self.u.size(-1)
331
+ alpha_bar_t = alpha_bar_t.to(device)
332
+ alpha_bar_t = alpha_bar_t.view(bs, 1, 1)
333
+ self.u = self.u.to(device)
334
+ q = (
335
+ alpha_bar_t * torch.eye(d0, device=device, dtype=self.u.dtype).unsqueeze(0)
336
+ + (1 - alpha_bar_t) * self.u
337
+ )
338
+
339
+ return PlaceHolder(X=q, E=None, y=None)
340
+
341
+
342
+ def sum_except_batch(x):
343
+ return x.reshape(x.size(0), -1).sum(dim=-1)
344
+
345
+ def assert_correctly_masked(variable, node_mask):
346
+ assert (
347
+ variable * (1 - node_mask.long())
348
+ ).abs().max().item() < 1e-4, "Variables not masked properly."
349
+
350
+ def cosine_beta_schedule_discrete(timesteps, s=0.008):
351
+ """Cosine schedule as proposed in https://openreview.net/forum?id=-NEXDKk8gZ."""
352
+ steps = timesteps + 2
353
+ x = np.linspace(0, steps, steps)
354
+
355
+ alphas_cumprod = np.cos(0.5 * np.pi * ((x / steps) + s) / (1 + s)) ** 2
356
+ alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
357
+ alphas = alphas_cumprod[1:] / alphas_cumprod[:-1]
358
+ betas = 1 - alphas
359
+ return betas.squeeze()
360
+
361
+
362
+ def sample_discrete_features(probX, probE, node_mask, step=None, add_nose=True):
363
+ """Sample features from multinomial distribution with given probabilities (probX, probE, proby)
364
+ :param probX: bs, n, dx_out node features
365
+ :param probE: bs, n, n, de_out edge features
366
+ :param proby: bs, dy_out global features.
367
+ """
368
+ bs, n, _ = probX.shape
369
+
370
+ # Noise X
371
+ # The masked rows should define probability distributions as well
372
+ probX[~node_mask] = 1 / probX.shape[-1]
373
+
374
+ # Flatten the probability tensor to sample with multinomial
375
+ probX = probX.reshape(bs * n, -1) # (bs * n, dx_out)
376
+
377
+ # Sample X
378
+ probX = probX.clamp_min(1e-5)
379
+ probX = probX / probX.sum(dim=-1, keepdim=True)
380
+ X_t = probX.multinomial(1) # (bs * n, 1)
381
+ X_t = X_t.reshape(bs, n) # (bs, n)
382
+
383
+ # Noise E
384
+ # The masked rows should define probability distributions as well
385
+ inverse_edge_mask = ~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2))
386
+ diag_mask = torch.eye(n).unsqueeze(0).expand(bs, -1, -1)
387
+
388
+ probE[inverse_edge_mask] = 1 / probE.shape[-1]
389
+ probE[diag_mask.bool()] = 1 / probE.shape[-1]
390
+ probE = probE.reshape(bs * n * n, -1) # (bs * n * n, de_out)
391
+ probE = probE.clamp_min(1e-5)
392
+ probE = probE / probE.sum(dim=-1, keepdim=True)
393
+
394
+ # Sample E
395
+ E_t = probE.multinomial(1).reshape(bs, n, n) # (bs, n, n)
396
+ E_t = torch.triu(E_t, diagonal=1)
397
+ E_t = E_t + torch.transpose(E_t, 1, 2)
398
+
399
+ return PlaceHolder(X=X_t, E=E_t, y=torch.zeros(bs, 0).type_as(X_t))
400
+
401
+
402
+ def mask_distributions(true_X, true_E, pred_X, pred_E, node_mask):
403
+ # Add a small value everywhere to avoid nans
404
+ pred_X = pred_X.clamp_min(1e-5)
405
+ pred_X = pred_X / torch.sum(pred_X, dim=-1, keepdim=True)
406
+
407
+ pred_E = pred_E.clamp_min(1e-5)
408
+ pred_E = pred_E / torch.sum(pred_E, dim=-1, keepdim=True)
409
+
410
+ # Set masked rows to arbitrary distributions, so it doesn't contribute to loss
411
+ row_X = torch.ones(true_X.size(-1), dtype=true_X.dtype, device=true_X.device)
412
+ row_E = torch.zeros(
413
+ true_E.size(-1), dtype=true_E.dtype, device=true_E.device
414
+ ).clamp_min(1e-5)
415
+ row_E[0] = 1.0
416
+
417
+ diag_mask = ~torch.eye(
418
+ node_mask.size(1), device=node_mask.device, dtype=torch.bool
419
+ ).unsqueeze(0)
420
+ true_X[~node_mask] = row_X
421
+ true_E[~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2) * diag_mask), :] = row_E
422
+ pred_X[~node_mask] = row_X.type_as(pred_X)
423
+ pred_E[~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2) * diag_mask), :] = (
424
+ row_E.type_as(pred_E)
425
+ )
426
 
427
+ return true_X, true_E, pred_X, pred_E
428
 
429
 
430
+ def forward_diffusion(X, X_t, Qt, Qsb, Qtb, X_dim):
431
+ bs, n, d = X.shape
432
 
433
+ Qt_X_T = torch.transpose(Qt.X, -2, -1) # (bs, d, d)
434
+ left_term = X_t @ Qt_X_T # (bs, N, d)
435
+ right_term = X @ Qsb.X # (bs, N, d)
436
 
437
+ numerator = left_term * right_term # (bs, N, d)
438
+ denominator = X @ Qtb.X # (bs, N, d) @ (bs, d, d) = (bs, N, d)
439
+ denominator = denominator * X_t
440
 
441
+ num_X = numerator[:, :, :X_dim]
442
+ num_E = numerator[:, :, X_dim:].reshape(bs, n * n, -1)
443
 
444
+ deno_X = denominator[:, :, :X_dim]
445
+ deno_E = denominator[:, :, X_dim:].reshape(bs, n * n, -1)
446
 
447
+ denominator = denominator.unsqueeze(-1) # (bs, N, 1)
448
 
449
+ deno_X = deno_X.sum(dim=-1, keepdim=True)
450
+ deno_E = deno_E.sum(dim=-1, keepdim=True)
451
 
452
+ deno_X[deno_X == 0.0] = 1
453
+ deno_E[deno_E == 0.0] = 1
454
+ prob_X = num_X / deno_X
455
+ prob_E = num_E / deno_E
456
 
457
+ prob_E = prob_E / prob_E.sum(dim=-1, keepdim=True)
458
+ prob_X = prob_X / prob_X.sum(dim=-1, keepdim=True)
459
+ return PlaceHolder(X=prob_X, E=prob_E, y=None)
460
 
461
 
462
+ def reverse_diffusion(predX_0, X_t, Qt, Qsb, Qtb):
463
+ """M: X or E
464
+ Compute xt @ Qt.T * x0 @ Qsb / x0 @ Qtb @ xt.T for each possible value of x0
465
+ X_t: bs, n, dt or bs, n, n, dt
466
+ Qt: bs, d_t-1, dt
467
+ Qsb: bs, d0, d_t-1
468
+ Qtb: bs, d0, dt.
469
+ """
470
+ Qt_T = Qt.transpose(-1, -2) # bs, N, dt
471
+ assert Qt.dim() == 3
472
+ left_term = X_t @ Qt_T # bs, N, d_t-1
473
+ right_term = predX_0 @ Qsb
474
+ numerator = left_term * right_term # bs, N, d_t-1
475
 
476
+ denominator = Qtb @ X_t.transpose(-1, -2) # bs, d0, N
477
+ denominator = denominator.transpose(-1, -2) # bs, N, d0
478
+ return numerator / denominator.clamp_min(1e-5)
479
 
480
+ def reverse_tensor(x):
481
+ return x[torch.arange(x.size(0) - 1, -1, -1)]
482
 
483
+ def sample_discrete_feature_noise(limit_dist, node_mask):
484
+ """Sample from the limit distribution of the diffusion process"""
485
+ bs, n_max = node_mask.shape
486
+ x_limit = limit_dist.X[None, None, :].expand(bs, n_max, -1)
487
+ x_limit = x_limit.to(node_mask.device)
488
 
489
+ U_X = x_limit.flatten(end_dim=-2).multinomial(1).reshape(bs, n_max)
490
+ U_X = F.one_hot(U_X.long(), num_classes=x_limit.shape[-1]).type_as(x_limit)
491
 
492
+ e_limit = limit_dist.E[None, None, None, :].expand(bs, n_max, n_max, -1)
493
+ U_E = e_limit.flatten(end_dim=-2).multinomial(1).reshape(bs, n_max, n_max)
494
+ U_E = F.one_hot(U_E.long(), num_classes=e_limit.shape[-1]).type_as(x_limit)
495
 
496
+ U_X = U_X.to(node_mask.device)
497
+ U_E = U_E.to(node_mask.device)
498
 
499
+ # Get upper triangular part of edge noise, without main diagonal
500
+ upper_triangular_mask = torch.zeros_like(U_E)
501
+ indices = torch.triu_indices(row=U_E.size(1), col=U_E.size(2), offset=1)
502
+ upper_triangular_mask[:, indices[0], indices[1], :] = 1
503
 
504
+ U_E = U_E * upper_triangular_mask
505
+ U_E = U_E + torch.transpose(U_E, 1, 2)
506
 
507
+ assert (U_E == torch.transpose(U_E, 1, 2)).all()
508
+ return PlaceHolder(X=U_X, E=U_E, y=None).mask(node_mask)
509
 
510
 
511
+ def index_QE(X, q_e, n_bond=5):
512
+ bs, n, n_atom = X.shape
513
+ node_indices = X.argmax(-1) # (bs, n)
514
 
515
+ exp_ind1 = node_indices[:, :, None, None, None].expand(
516
+ bs, n, n_atom, n_bond, n_bond
517
+ )
518
+ exp_ind2 = node_indices[:, :, None, None, None].expand(bs, n, n, n_bond, n_bond)
519
 
520
+ q_e = torch.gather(q_e, 1, exp_ind1)
521
+ q_e = torch.gather(q_e, 2, exp_ind2) # (bs, n, n, n_bond, n_bond)
522
 
523
+ node_mask = X.sum(-1) != 0
524
+ no_edge = (~node_mask)[:, :, None] & (~node_mask)[:, None, :]
525
+ q_e[no_edge] = torch.tensor([1, 0, 0, 0, 0]).type_as(q_e)
526
 
527
+ return q_e