File size: 13,546 Bytes
9e636c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19ae33a
9e636c4
19ae33a
9e636c4
19ae33a
 
 
 
9e636c4
19ae33a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e636c4
19ae33a
 
 
 
 
 
 
 
 
 
 
05ae67e
19ae33a
 
 
 
 
 
 
 
 
 
 
 
9e636c4
19ae33a
 
9e636c4
19ae33a
 
 
 
9e636c4
19ae33a
 
 
 
 
 
 
 
 
9e636c4
05ae67e
9e636c4
 
7044315
9e636c4
 
 
 
7044315
9e636c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05ae67e
9e636c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05ae67e
9e636c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import os 
import yaml
import json

import torch
import torch.nn as nn
import torch.nn.functional as F

from . import diffusion_utils as utils
from .molecule_utils import graph_to_smiles, check_valid
from .transformer import Transformer
from .visualize_utils import MolecularVisualization

class GraphDiT(nn.Module):
    def __init__(
        self,
        model_config_path,
        data_info_path,
        model_dtype,
    ):
        super().__init__()
        pass

        # dm_cfg, data_info = utils.load_config(model_config_path, data_info_path)

        # input_dims = data_info.input_dims
        # output_dims = data_info.output_dims
        # nodes_dist = data_info.nodes_dist
        # active_index = data_info.active_index

        # self.model_config = dm_cfg
        # self.data_info = data_info
        # self.T = dm_cfg.diffusion_steps
        # self.Xdim = input_dims["X"]
        # self.Edim = input_dims["E"]
        # self.ydim = input_dims["y"]
        # self.Xdim_output = output_dims["X"]
        # self.Edim_output = output_dims["E"]
        # self.ydim_output = output_dims["y"]
        # self.node_dist = nodes_dist
        # self.active_index = active_index
        # self.max_n_nodes = data_info.max_n_nodes
        # self.atom_decoder = data_info.atom_decoder
        # self.hidden_size = dm_cfg.hidden_size
        # self.mol_visualizer = MolecularVisualization(self.atom_decoder)

        # self.denoiser = Transformer(
        #     max_n_nodes=self.max_n_nodes,
        #     hidden_size=dm_cfg.hidden_size,
        #     depth=dm_cfg.depth,
        #     num_heads=dm_cfg.num_heads,
        #     mlp_ratio=dm_cfg.mlp_ratio,
        #     drop_condition=dm_cfg.drop_condition,
        #     Xdim=self.Xdim,
        #     Edim=self.Edim,
        #     ydim=self.ydim,
        # )

        # self.model_dtype = model_dtype
        # self.noise_schedule = utils.PredefinedNoiseScheduleDiscrete(
        #     dm_cfg.diffusion_noise_schedule, timesteps=dm_cfg.diffusion_steps
        # )
        # x_marginals = data_info.node_types.to(self.model_dtype) / torch.sum(
        #     data_info.node_types.to(self.model_dtype)
        # )
        # e_marginals = data_info.edge_types.to(self.model_dtype) / torch.sum(
        #     data_info.edge_types.to(self.model_dtype)
        # )
        # x_marginals = x_marginals / x_marginals.sum()
        # e_marginals = e_marginals / e_marginals.sum()

        # xe_conditions = data_info.transition_E.to(self.model_dtype)
        # xe_conditions = xe_conditions[self.active_index][:, self.active_index]

        # xe_conditions = xe_conditions.sum(dim=1)
        # ex_conditions = xe_conditions.t()
        # xe_conditions = xe_conditions / xe_conditions.sum(dim=-1, keepdim=True)
        # ex_conditions = ex_conditions / ex_conditions.sum(dim=-1, keepdim=True)

        # self.transition_model = utils.MarginalTransition(
        #     x_marginals=x_marginals,
        #     e_marginals=e_marginals,
        #     xe_conditions=xe_conditions,
        #     ex_conditions=ex_conditions,
        #     y_classes=self.ydim_output,
        #     n_nodes=self.max_n_nodes,
        # )
        # self.limit_dist = utils.PlaceHolder(X=x_marginals, E=e_marginals, y=None)

    def init_model(self, model_dir):
        model_file = os.path.join(model_dir, 'model.pt')
        if os.path.exists(model_file):
            self.denoiser.load_state_dict(torch.load(model_file, map_location='cpu', weights_only=True))
        else:
            raise FileNotFoundError(f"Model file not found: {model_file}")

    def disable_grads(self):
        self.denoiser.disable_grads()
    
    def forward(
        self, x, edge_index, edge_attr, graph_batch, properties, no_label_index
    ):
        raise ValueError('Not Implement')

    def _forward(self, noisy_data, unconditioned=False):
        noisy_x, noisy_e, properties = (
            noisy_data["X_t"].to(self.model_dtype),
            noisy_data["E_t"].to(self.model_dtype),
            noisy_data["y_t"].to(self.model_dtype).clone(),
        )
        node_mask, timestep = (
            noisy_data["node_mask"],
            noisy_data["t"],
        )
        
        pred = self.denoiser(
            noisy_x,
            noisy_e,
            node_mask,
            properties,
            timestep,
            unconditioned=unconditioned,
        )
        return pred

    def apply_noise(self, X, E, y, node_mask):
        """Sample noise and apply it to the data."""

        # Sample a timestep t.
        # When evaluating, the loss for t=0 is computed separately
        lowest_t = 0 if self.training else 1
        t_int = torch.randint(
            lowest_t, self.T + 1, size=(X.size(0), 1), device=X.device
        ).to(
            self.model_dtype
        )  # (bs, 1)
        s_int = t_int - 1

        t_float = t_int / self.T
        s_float = s_int / self.T

        # beta_t and alpha_s_bar are used for denoising/loss computation
        beta_t = self.noise_schedule(t_normalized=t_float)  # (bs, 1)
        alpha_s_bar = self.noise_schedule.get_alpha_bar(t_normalized=s_float)  # (bs, 1)
        alpha_t_bar = self.noise_schedule.get_alpha_bar(t_normalized=t_float)  # (bs, 1)

        Qtb = self.transition_model.get_Qt_bar(
            alpha_t_bar, X.device
        )  # (bs, dx_in, dx_out), (bs, de_in, de_out)

        bs, n, d = X.shape
        X_all = torch.cat([X, E.reshape(bs, n, -1)], dim=-1)
        prob_all = X_all @ Qtb.X
        probX = prob_all[:, :, : self.Xdim_output]
        probE = prob_all[:, :, self.Xdim_output :].reshape(bs, n, n, -1)

        sampled_t = utils.sample_discrete_features(
            probX=probX, probE=probE, node_mask=node_mask
        )

        X_t = F.one_hot(sampled_t.X, num_classes=self.Xdim_output)
        E_t = F.one_hot(sampled_t.E, num_classes=self.Edim_output)
        assert (X.shape == X_t.shape) and (E.shape == E_t.shape)

        y_t = y
        z_t = utils.PlaceHolder(X=X_t, E=E_t, y=y_t).type_as(X_t).mask(node_mask)

        noisy_data = {
            "t_int": t_int,
            "t": t_float,
            "beta_t": beta_t,
            "alpha_s_bar": alpha_s_bar,
            "alpha_t_bar": alpha_t_bar,
            "X_t": z_t.X,
            "E_t": z_t.E,
            "y_t": z_t.y,
            "node_mask": node_mask,
        }
        return noisy_data

    @torch.no_grad()
    def generate(
        self,
        properties,
        device,
        guide_scale=1.,
        num_nodes=None,
        number_chain_steps=50,
    ):
        properties = [float('nan') if x is None else x for x in properties]
        properties = torch.tensor(properties, dtype=torch.float).reshape(1, -1).to(device)
        batch_size = properties.size(0)
        assert batch_size == 1
        if num_nodes is None:
            num_nodes = self.node_dist.sample_n(batch_size, device)
        else:
            num_nodes = torch.LongTensor([num_nodes]).to(device)

        arange = (
            torch.arange(self.max_n_nodes, device=device)
            .unsqueeze(0)
            .expand(batch_size, -1)
        )
        node_mask = arange < num_nodes.unsqueeze(1)

        z_T = utils.sample_discrete_feature_noise(
            limit_dist=self.limit_dist, node_mask=node_mask
        )
        X, E = z_T.X, z_T.E

        assert (E == torch.transpose(E, 1, 2)).all()

        if number_chain_steps > 0:
            chain_X_size = torch.Size((number_chain_steps, X.size(1)))
            chain_E_size = torch.Size((number_chain_steps, E.size(1), E.size(2)))
            chain_X = torch.zeros(chain_X_size)
            chain_E = torch.zeros(chain_E_size)

        # Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1.
        y = properties
        for s_int in reversed(range(0, self.T)):
            s_array = s_int * torch.ones((batch_size, 1)).type_as(y)
            t_array = s_array + 1
            s_norm = s_array / self.T
            t_norm = t_array / self.T

            # Sample z_s
            sampled_s, discrete_sampled_s = self.sample_p_zs_given_zt(
                s_norm, t_norm, X, E, y, node_mask, guide_scale, device
            )
            X, E, y = sampled_s.X, sampled_s.E, sampled_s.y
            
            if number_chain_steps > 0:
                # Save the first keep_chain graphs
                write_index = (s_int * number_chain_steps) // self.T
                chain_X[write_index] = discrete_sampled_s.X[:1]
                chain_E[write_index] = discrete_sampled_s.E[:1]

        # Sample
        sampled_s = sampled_s.mask(node_mask, collapse=True)
        X, E, y = sampled_s.X, sampled_s.E, sampled_s.y

        molecule_list = []
        n = num_nodes[0]
        atom_types = X[0, :n].cpu()
        edge_types = E[0, :n, :n].cpu()
        molecule_list.append([atom_types, edge_types])
        smiles = graph_to_smiles(molecule_list, self.atom_decoder)[0]

        # Visualize Chains
        if number_chain_steps > 0:
            final_X_chain = X[:1]
            final_E_chain = E[:1]

            chain_X[0] = final_X_chain                  # Overwrite last frame with the resulting X, E
            chain_E[0] = final_E_chain

            chain_X = utils.reverse_tensor(chain_X)
            chain_E = utils.reverse_tensor(chain_E)

            # Repeat last frame to see final sample better
            chain_X = torch.cat([chain_X, chain_X[-1:].repeat(10, 1)], dim=0)
            chain_E = torch.cat([chain_E, chain_E[-1:].repeat(10, 1, 1)], dim=0)
            mol_img_list = self.mol_visualizer.visualize_chain(chain_X.numpy(), chain_E.numpy())
        else:
            mol_img_list = []

        return smiles, mol_img_list

    def check_valid(self, smiles):
        return check_valid(smiles)
    
    def sample_p_zs_given_zt(
        self, s, t, X_t, E_t, properties, node_mask, guide_scale, device
    ):
        """Samples from zs ~ p(zs | zt). Only used during sampling.
        if last_step, return the graph prediction as well"""
        bs, n, _ = X_t.shape
        beta_t = self.noise_schedule(t_normalized=t)  # (bs, 1)
        alpha_s_bar = self.noise_schedule.get_alpha_bar(t_normalized=s)
        alpha_t_bar = self.noise_schedule.get_alpha_bar(t_normalized=t)

        # Neural net predictions
        noisy_data = {
            "X_t": X_t,
            "E_t": E_t,
            "y_t": properties,
            "t": t,
            "node_mask": node_mask,
        }

        def get_prob(noisy_data, unconditioned=False):
            pred = self._forward(noisy_data, unconditioned=unconditioned)

            # Normalize predictions
            pred_X = F.softmax(pred.X, dim=-1)  # bs, n, d0
            pred_E = F.softmax(pred.E, dim=-1)  # bs, n, n, d0

            # Retrieve transitions matrix
            Qtb = self.transition_model.get_Qt_bar(alpha_t_bar, device)
            Qsb = self.transition_model.get_Qt_bar(alpha_s_bar, device)
            Qt = self.transition_model.get_Qt(beta_t, device)

            Xt_all = torch.cat([X_t, E_t.reshape(bs, n, -1)], dim=-1)
            predX_all = torch.cat([pred_X, pred_E.reshape(bs, n, -1)], dim=-1)

            unnormalized_probX_all = utils.reverse_diffusion(
                predX_0=predX_all, X_t=Xt_all, Qt=Qt.X, Qsb=Qsb.X, Qtb=Qtb.X
            )

            unnormalized_prob_X = unnormalized_probX_all[:, :, : self.Xdim_output]
            unnormalized_prob_E = unnormalized_probX_all[
                :, :, self.Xdim_output :
            ].reshape(bs, n * n, -1)

            unnormalized_prob_X[torch.sum(unnormalized_prob_X, dim=-1) == 0] = 1e-5
            unnormalized_prob_E[torch.sum(unnormalized_prob_E, dim=-1) == 0] = 1e-5

            prob_X = unnormalized_prob_X / torch.sum(
                unnormalized_prob_X, dim=-1, keepdim=True
            )  # bs, n, d_t-1
            prob_E = unnormalized_prob_E / torch.sum(
                unnormalized_prob_E, dim=-1, keepdim=True
            )  # bs, n, d_t-1
            prob_E = prob_E.reshape(bs, n, n, pred_E.shape[-1])

            return prob_X, prob_E

        prob_X, prob_E = get_prob(noisy_data)

        ### Guidance
        if guide_scale != 1:
            uncon_prob_X, uncon_prob_E = get_prob(
                noisy_data, unconditioned=True
            )
            prob_X = (
                uncon_prob_X
                * (prob_X / uncon_prob_X.clamp_min(1e-5)) ** guide_scale
            )
            prob_E = (
                uncon_prob_E
                * (prob_E / uncon_prob_E.clamp_min(1e-5)) ** guide_scale
            )
            prob_X = prob_X / prob_X.sum(dim=-1, keepdim=True).clamp_min(1e-5)
            prob_E = prob_E / prob_E.sum(dim=-1, keepdim=True).clamp_min(1e-5)

        # assert ((prob_X.sum(dim=-1) - 1).abs() < 1e-3).all()
        # assert ((prob_E.sum(dim=-1) - 1).abs() < 1e-3).all()

        sampled_s = utils.sample_discrete_features(
            prob_X, prob_E, node_mask=node_mask, step=s[0, 0].item()
        )

        X_s = F.one_hot(sampled_s.X, num_classes=self.Xdim_output).to(self.model_dtype)
        E_s = F.one_hot(sampled_s.E, num_classes=self.Edim_output).to(self.model_dtype)

        assert (E_s == torch.transpose(E_s, 1, 2)).all()
        assert (X_t.shape == X_s.shape) and (E_t.shape == E_s.shape)

        out_one_hot = utils.PlaceHolder(X=X_s, E=E_s, y=properties)
        out_discrete = utils.PlaceHolder(X=X_s, E=E_s, y=properties)

        return out_one_hot.mask(node_mask).type_as(properties), out_discrete.mask(
            node_mask, collapse=True
        ).type_as(properties)