File size: 19,858 Bytes
1cf98a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
# Copyright 2024 the Llamole team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import numpy as np
from torch.nn import functional as F
from torch_geometric.utils import to_dense_adj, to_dense_batch, remove_self_loops
import os
import json
import yaml
from types import SimpleNamespace

def dict_to_namespace(d):
    return SimpleNamespace(
        **{k: dict_to_namespace(v) if isinstance(v, dict) else v for k, v in d.items()}
    )

class DataInfos:
    def __init__(self, meta_filename="data.meta.json"):
        self.all_targets = ['CH4', 'CO2', 'H2', 'N2', 'O2']
        self.task_type = "gas_permeability"
        if os.path.exists(meta_filename):
            with open(meta_filename, "r") as f:
                meta_dict = json.load(f)
        else:
            raise FileNotFoundError(f"Meta file {meta_filename} not found.")

        self.active_atoms = meta_dict["active_atoms"]
        self.max_n_nodes = meta_dict["max_node"]
        self.original_max_n_nodes = meta_dict["max_node"]
        self.n_nodes = torch.Tensor(meta_dict["n_atoms_per_mol_dist"])
        self.edge_types = torch.Tensor(meta_dict["bond_type_dist"])
        self.transition_E = torch.Tensor(meta_dict["transition_E"])

        self.atom_decoder = meta_dict["active_atoms"]
        node_types = torch.Tensor(meta_dict["atom_type_dist"])
        active_index = (node_types > 0).nonzero().squeeze()
        self.node_types = torch.Tensor(meta_dict["atom_type_dist"])[active_index]
        self.nodes_dist = DistributionNodes(self.n_nodes)
        self.active_index = active_index

        val_len = 3 * self.original_max_n_nodes - 2
        meta_val = torch.Tensor(meta_dict["valencies"])
        self.valency_distribution = torch.zeros(val_len)
        val_len = min(val_len, len(meta_val))
        self.valency_distribution[:val_len] = meta_val[:val_len]
        ## for all
        self.input_dims = {"X": len(self.active_atoms), "E": 5, "y": 5}
        self.output_dims = {"X": len(self.active_atoms), "E": 5, "y": 5}
        # self.input_dims = {"X": 11, "E": 5, "y": 5}
        # self.output_dims = {"X": 11, "E": 5, "y": 5}

def load_config(config_path, data_meta_info_path):
    if not os.path.exists(config_path):
        raise FileNotFoundError(f"Configuration file not found: {config_path}")

    if not os.path.exists(data_meta_info_path):
        raise FileNotFoundError(f"Data meta info file not found: {data_meta_info_path}")

    with open(config_path, "r") as file:
        cfg_dict = yaml.safe_load(file)

    cfg = dict_to_namespace(cfg_dict)

    data_info = DataInfos(data_meta_info_path)
    return cfg, data_info


#### graph utils
class PlaceHolder:
    def __init__(self, X, E, y):
        self.X = X
        self.E = E
        self.y = y

    def type_as(self, x: torch.Tensor, categorical: bool = False):
        """Changes the device and dtype of X, E, y."""
        self.X = self.X.type_as(x)
        self.E = self.E.type_as(x)
        if categorical:
            self.y = self.y.type_as(x)
        return self

    def mask(self, node_mask, collapse=False):
        x_mask = node_mask.unsqueeze(-1)  # bs, n, 1
        e_mask1 = x_mask.unsqueeze(2)  # bs, n, 1, 1
        e_mask2 = x_mask.unsqueeze(1)  # bs, 1, n, 1

        if collapse:
            self.X = torch.argmax(self.X, dim=-1)
            self.E = torch.argmax(self.E, dim=-1)

            self.X[node_mask == 0] = -1
            self.E[(e_mask1 * e_mask2).squeeze(-1) == 0] = -1
        else:
            self.X = self.X * x_mask
            self.E = self.E * e_mask1 * e_mask2
            assert torch.allclose(self.E, torch.transpose(self.E, 1, 2))
        return self


def to_dense(x, edge_index, edge_attr, batch, max_num_nodes=None):
    X, node_mask = to_dense_batch(x=x, batch=batch, max_num_nodes=max_num_nodes)
    # node_mask = node_mask.float()
    edge_index, edge_attr = remove_self_loops(edge_index, edge_attr)
    if max_num_nodes is None:
        max_num_nodes = X.size(1)
    E = to_dense_adj(
        edge_index=edge_index,
        batch=batch,
        edge_attr=edge_attr,
        max_num_nodes=max_num_nodes,
    )
    E = encode_no_edge(E)
    return PlaceHolder(X=X, E=E, y=None), node_mask


def encode_no_edge(E):
    assert len(E.shape) == 4
    if E.shape[-1] == 0:
        return E
    no_edge = torch.sum(E, dim=3) == 0
    first_elt = E[:, :, :, 0]
    first_elt[no_edge] = 1
    E[:, :, :, 0] = first_elt
    diag = (
        torch.eye(E.shape[1], dtype=torch.bool).unsqueeze(0).expand(E.shape[0], -1, -1)
    )
    E[diag] = 0
    return E


#### diffusion utils
class DistributionNodes:
    def __init__(self, histogram):
        """Compute the distribution of the number of nodes in the dataset, and sample from this distribution.
        historgram: dict. The keys are num_nodes, the values are counts
        """

        if type(histogram) == dict:
            max_n_nodes = max(histogram.keys())
            prob = torch.zeros(max_n_nodes + 1)
            for num_nodes, count in histogram.items():
                prob[num_nodes] = count
        else:
            prob = histogram

        self.prob = prob / prob.sum()
        self.m = torch.distributions.Categorical(prob)

    def sample_n(self, n_samples, device):
        idx = self.m.sample((n_samples,))
        return idx.to(device)

    def log_prob(self, batch_n_nodes):
        assert len(batch_n_nodes.size()) == 1
        p = self.prob.to(batch_n_nodes.device)

        probas = p[batch_n_nodes]
        log_p = torch.log(probas + 1e-30)
        return log_p


class PredefinedNoiseScheduleDiscrete(torch.nn.Module):
    def __init__(self, noise_schedule, timesteps):
        super(PredefinedNoiseScheduleDiscrete, self).__init__()
        self.timesteps = timesteps

        betas = cosine_beta_schedule_discrete(timesteps)
        self.register_buffer("betas", torch.from_numpy(betas).float())

        # 0.9999
        self.alphas = 1 - torch.clamp(self.betas, min=0, max=1)

        log_alpha = torch.log(self.alphas)
        log_alpha_bar = torch.cumsum(log_alpha, dim=0)
        self.alphas_bar = torch.exp(log_alpha_bar)

    def forward(self, t_normalized=None, t_int=None):
        assert int(t_normalized is None) + int(t_int is None) == 1
        if t_int is None:
            t_int = torch.round(t_normalized * self.timesteps)
        self.betas = self.betas.type_as(t_int)
        return self.betas[t_int.long()]

    def get_alpha_bar(self, t_normalized=None, t_int=None):
        assert int(t_normalized is None) + int(t_int is None) == 1
        if t_int is None:
            t_int = torch.round(t_normalized * self.timesteps)
        self.alphas_bar = self.alphas_bar.type_as(t_int)
        return self.alphas_bar[t_int.long()]


class DiscreteUniformTransition:
    def __init__(self, x_classes: int, e_classes: int, y_classes: int):
        self.X_classes = x_classes
        self.E_classes = e_classes
        self.y_classes = y_classes
        self.u_x = torch.ones(1, self.X_classes, self.X_classes)
        if self.X_classes > 0:
            self.u_x = self.u_x / self.X_classes

        self.u_e = torch.ones(1, self.E_classes, self.E_classes)
        if self.E_classes > 0:
            self.u_e = self.u_e / self.E_classes

        self.u_y = torch.ones(1, self.y_classes, self.y_classes)
        if self.y_classes > 0:
            self.u_y = self.u_y / self.y_classes

    def get_Qt(self, beta_t, device, X=None, flatten_e=None):
        """Returns one-step transition matrices for X and E, from step t - 1 to step t.
        Qt = (1 - beta_t) * I + beta_t / K

        beta_t: (bs)                         noise level between 0 and 1
        returns: qx (bs, dx, dx), qe (bs, de, de), qy (bs, dy, dy).
        """
        beta_t = beta_t.unsqueeze(1)
        beta_t = beta_t.to(device)
        self.u_x = self.u_x.to(device)
        self.u_e = self.u_e.to(device)
        self.u_y = self.u_y.to(device)

        q_x = beta_t * self.u_x + (1 - beta_t) * torch.eye(
            self.X_classes, device=device
        ).unsqueeze(0)
        q_e = beta_t * self.u_e + (1 - beta_t) * torch.eye(
            self.E_classes, device=device
        ).unsqueeze(0)
        q_y = beta_t * self.u_y + (1 - beta_t) * torch.eye(
            self.y_classes, device=device
        ).unsqueeze(0)

        return PlaceHolder(X=q_x, E=q_e, y=q_y)

    def get_Qt_bar(self, alpha_bar_t, device, X=None, flatten_e=None):
        """Returns t-step transition matrices for X and E, from step 0 to step t.
        Qt = prod(1 - beta_t) * I + (1 - prod(1 - beta_t)) / K

        alpha_bar_t: (bs)         Product of the (1 - beta_t) for each time step from 0 to t.
        returns: qx (bs, dx, dx), qe (bs, de, de), qy (bs, dy, dy).
        """
        alpha_bar_t = alpha_bar_t.unsqueeze(1)
        alpha_bar_t = alpha_bar_t.to(device)
        self.u_x = self.u_x.to(device)
        self.u_e = self.u_e.to(device)
        self.u_y = self.u_y.to(device)

        q_x = (
            alpha_bar_t * torch.eye(self.X_classes, device=device).unsqueeze(0)
            + (1 - alpha_bar_t) * self.u_x
        )
        q_e = (
            alpha_bar_t * torch.eye(self.E_classes, device=device).unsqueeze(0)
            + (1 - alpha_bar_t) * self.u_e
        )
        q_y = (
            alpha_bar_t * torch.eye(self.y_classes, device=device).unsqueeze(0)
            + (1 - alpha_bar_t) * self.u_y
        )

        return PlaceHolder(X=q_x, E=q_e, y=q_y)


class MarginalTransition:
    def __init__(
        self, x_marginals, e_marginals, xe_conditions, ex_conditions, y_classes, n_nodes
    ):
        self.X_classes = len(x_marginals)
        self.E_classes = len(e_marginals)
        self.y_classes = y_classes
        self.x_marginals = x_marginals  # Dx
        self.e_marginals = e_marginals  # Dx, De
        self.xe_conditions = xe_conditions
        # print('e_marginals.dtype', e_marginals.dtype)
        # print('x_marginals.dtype', x_marginals.dtype)
        # print('xe_conditions.dtype', xe_conditions.dtype)

        self.u_x = (
            x_marginals.unsqueeze(0).expand(self.X_classes, -1).unsqueeze(0)
        )  # 1, Dx, Dx
        self.u_e = (
            e_marginals.unsqueeze(0).expand(self.E_classes, -1).unsqueeze(0)
        )  # 1, De, De
        self.u_xe = xe_conditions.unsqueeze(0)  # 1, Dx, De
        self.u_ex = ex_conditions.unsqueeze(0)  # 1, De, Dx
        self.u = self.get_union_transition(
            self.u_x, self.u_e, self.u_xe, self.u_ex, n_nodes
        )  # 1, Dx + n*De, Dx + n*De

    def get_union_transition(self, u_x, u_e, u_xe, u_ex, n_nodes):
        u_e = u_e.repeat(1, n_nodes, n_nodes)  # (1, n*de, n*de)
        u_xe = u_xe.repeat(1, 1, n_nodes)  # (1, dx, n*de)
        u_ex = u_ex.repeat(1, n_nodes, 1)  # (1, n*de, dx)
        u0 = torch.cat([u_x, u_xe], dim=2)  # (1, dx, dx + n*de)
        u1 = torch.cat([u_ex, u_e], dim=2)  # (1, n*de, dx + n*de)
        u = torch.cat([u0, u1], dim=1)  # (1, dx + n*de, dx + n*de)
        return u

    def index_edge_margin(self, X, q_e, n_bond=5):
        # q_e: (bs, dx, de) --> (bs, n, de)
        bs, n, n_atom = X.shape
        node_indices = X.argmax(-1)  # (bs, n)
        ind = node_indices[:, :, None].expand(bs, n, n_bond)
        q_e = torch.gather(q_e, 1, ind)
        return q_e

    def get_Qt(self, beta_t, device):
        """Returns one-step transition matrices for X and E, from step t - 1 to step t.
        Qt = (1 - beta_t) * I + beta_t / K
        beta_t: (bs)
        returns: q (bs, d0, d0)
        """
        bs = beta_t.size(0)
        d0 = self.u.size(-1)
        self.u = self.u.to(device)
        u = self.u.expand(bs, d0, d0)

        beta_t = beta_t.to(device)
        beta_t = beta_t.view(bs, 1, 1)
        q = beta_t * u + (1 - beta_t) * torch.eye(d0, device=device, dtype=self.u.dtype).unsqueeze(0)

        return PlaceHolder(X=q, E=None, y=None)

    def get_Qt_bar(self, alpha_bar_t, device):
        """Returns t-step transition matrices for X and E, from step 0 to step t.
        Qt = prod(1 - beta_t) * I + (1 - prod(1 - beta_t)) * K
        alpha_bar_t: (bs, 1) roduct of the (1 - beta_t) for each time step from 0 to t.
        returns: q (bs, d0, d0)
        """
        bs = alpha_bar_t.size(0)
        d0 = self.u.size(-1)
        alpha_bar_t = alpha_bar_t.to(device)
        alpha_bar_t = alpha_bar_t.view(bs, 1, 1)
        self.u = self.u.to(device)
        q = (
            alpha_bar_t * torch.eye(d0, device=device, dtype=self.u.dtype).unsqueeze(0)
            + (1 - alpha_bar_t) * self.u
        )

        return PlaceHolder(X=q, E=None, y=None)


def sum_except_batch(x):
    return x.reshape(x.size(0), -1).sum(dim=-1)


def assert_correctly_masked(variable, node_mask):
    assert (
        variable * (1 - node_mask.long())
    ).abs().max().item() < 1e-4, "Variables not masked properly."


def cosine_beta_schedule_discrete(timesteps, s=0.008):
    """Cosine schedule as proposed in https://openreview.net/forum?id=-NEXDKk8gZ."""
    steps = timesteps + 2
    x = np.linspace(0, steps, steps)

    alphas_cumprod = np.cos(0.5 * np.pi * ((x / steps) + s) / (1 + s)) ** 2
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    alphas = alphas_cumprod[1:] / alphas_cumprod[:-1]
    betas = 1 - alphas
    return betas.squeeze()


def sample_discrete_features(probX, probE, node_mask, step=None, add_nose=True):
    """Sample features from multinomial distribution with given probabilities (probX, probE, proby)
    :param probX: bs, n, dx_out        node features
    :param probE: bs, n, n, de_out     edge features
    :param proby: bs, dy_out           global features.
    """
    bs, n, _ = probX.shape

    # Noise X
    # The masked rows should define probability distributions as well
    probX[~node_mask] = 1 / probX.shape[-1]

    # Flatten the probability tensor to sample with multinomial
    probX = probX.reshape(bs * n, -1)  # (bs * n, dx_out)

    # Sample X
    probX = probX.clamp_min(1e-5)
    probX = probX / probX.sum(dim=-1, keepdim=True)
    X_t = probX.multinomial(1)  # (bs * n, 1)
    X_t = X_t.reshape(bs, n)  # (bs, n)

    # Noise E
    # The masked rows should define probability distributions as well
    inverse_edge_mask = ~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2))
    diag_mask = torch.eye(n).unsqueeze(0).expand(bs, -1, -1)

    probE[inverse_edge_mask] = 1 / probE.shape[-1]
    probE[diag_mask.bool()] = 1 / probE.shape[-1]
    probE = probE.reshape(bs * n * n, -1)  # (bs * n * n, de_out)
    probE = probE.clamp_min(1e-5)
    probE = probE / probE.sum(dim=-1, keepdim=True)

    # Sample E
    E_t = probE.multinomial(1).reshape(bs, n, n)  # (bs, n, n)
    E_t = torch.triu(E_t, diagonal=1)
    E_t = E_t + torch.transpose(E_t, 1, 2)

    return PlaceHolder(X=X_t, E=E_t, y=torch.zeros(bs, 0).type_as(X_t))


def mask_distributions(true_X, true_E, pred_X, pred_E, node_mask):
    # Add a small value everywhere to avoid nans
    pred_X = pred_X.clamp_min(1e-5)
    pred_X = pred_X / torch.sum(pred_X, dim=-1, keepdim=True)

    pred_E = pred_E.clamp_min(1e-5)
    pred_E = pred_E / torch.sum(pred_E, dim=-1, keepdim=True)

    # Set masked rows to arbitrary distributions, so it doesn't contribute to loss
    row_X = torch.ones(true_X.size(-1), dtype=true_X.dtype, device=true_X.device)
    row_E = torch.zeros(
        true_E.size(-1), dtype=true_E.dtype, device=true_E.device
    ).clamp_min(1e-5)
    row_E[0] = 1.0

    diag_mask = ~torch.eye(
        node_mask.size(1), device=node_mask.device, dtype=torch.bool
    ).unsqueeze(0)
    true_X[~node_mask] = row_X
    true_E[~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2) * diag_mask), :] = row_E
    pred_X[~node_mask] = row_X.type_as(pred_X)
    pred_E[~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2) * diag_mask), :] = (
        row_E.type_as(pred_E)
    )

    return true_X, true_E, pred_X, pred_E


def forward_diffusion(X, X_t, Qt, Qsb, Qtb, X_dim):
    bs, n, d = X.shape

    Qt_X_T = torch.transpose(Qt.X, -2, -1)  # (bs, d, d)
    left_term = X_t @ Qt_X_T  # (bs, N, d)
    right_term = X @ Qsb.X  # (bs, N, d)

    numerator = left_term * right_term  # (bs, N, d)
    denominator = X @ Qtb.X  # (bs, N, d) @ (bs, d, d) = (bs, N, d)
    denominator = denominator * X_t

    num_X = numerator[:, :, :X_dim]
    num_E = numerator[:, :, X_dim:].reshape(bs, n * n, -1)

    deno_X = denominator[:, :, :X_dim]
    deno_E = denominator[:, :, X_dim:].reshape(bs, n * n, -1)

    denominator = denominator.unsqueeze(-1)  # (bs, N, 1)

    deno_X = deno_X.sum(dim=-1, keepdim=True)
    deno_E = deno_E.sum(dim=-1, keepdim=True)

    deno_X[deno_X == 0.0] = 1
    deno_E[deno_E == 0.0] = 1
    prob_X = num_X / deno_X
    prob_E = num_E / deno_E

    prob_E = prob_E / prob_E.sum(dim=-1, keepdim=True)
    prob_X = prob_X / prob_X.sum(dim=-1, keepdim=True)
    return PlaceHolder(X=prob_X, E=prob_E, y=None)


def reverse_diffusion(predX_0, X_t, Qt, Qsb, Qtb):
    """M: X or E
    Compute xt @ Qt.T * x0 @ Qsb / x0 @ Qtb @ xt.T for each possible value of x0
    X_t: bs, n, dt          or bs, n, n, dt
    Qt: bs, d_t-1, dt
    Qsb: bs, d0, d_t-1
    Qtb: bs, d0, dt.
    """
    Qt_T = Qt.transpose(-1, -2)  # bs, N, dt
    assert Qt.dim() == 3
    left_term = X_t @ Qt_T  # bs, N, d_t-1
    right_term = predX_0 @ Qsb
    numerator = left_term * right_term  # bs, N, d_t-1

    denominator = Qtb @ X_t.transpose(-1, -2)  # bs, d0, N
    denominator = denominator.transpose(-1, -2)  # bs, N, d0
    return numerator / denominator.clamp_min(1e-5)

def reverse_tensor(x):
    return x[torch.arange(x.size(0) - 1, -1, -1)]
    
def sample_discrete_feature_noise(limit_dist, node_mask):
    """Sample from the limit distribution of the diffusion process"""
    bs, n_max = node_mask.shape
    x_limit = limit_dist.X[None, None, :].expand(bs, n_max, -1)
    x_limit = x_limit.to(node_mask.device)

    U_X = x_limit.flatten(end_dim=-2).multinomial(1).reshape(bs, n_max)
    U_X = F.one_hot(U_X.long(), num_classes=x_limit.shape[-1]).type_as(x_limit)

    e_limit = limit_dist.E[None, None, None, :].expand(bs, n_max, n_max, -1)
    U_E = e_limit.flatten(end_dim=-2).multinomial(1).reshape(bs, n_max, n_max)
    U_E = F.one_hot(U_E.long(), num_classes=e_limit.shape[-1]).type_as(x_limit)

    U_X = U_X.to(node_mask.device)
    U_E = U_E.to(node_mask.device)

    # Get upper triangular part of edge noise, without main diagonal
    upper_triangular_mask = torch.zeros_like(U_E)
    indices = torch.triu_indices(row=U_E.size(1), col=U_E.size(2), offset=1)
    upper_triangular_mask[:, indices[0], indices[1], :] = 1

    U_E = U_E * upper_triangular_mask
    U_E = U_E + torch.transpose(U_E, 1, 2)

    assert (U_E == torch.transpose(U_E, 1, 2)).all()
    return PlaceHolder(X=U_X, E=U_E, y=None).mask(node_mask)


def index_QE(X, q_e, n_bond=5):
    bs, n, n_atom = X.shape
    node_indices = X.argmax(-1)  # (bs, n)

    exp_ind1 = node_indices[:, :, None, None, None].expand(
        bs, n, n_atom, n_bond, n_bond
    )
    exp_ind2 = node_indices[:, :, None, None, None].expand(bs, n, n, n_bond, n_bond)

    q_e = torch.gather(q_e, 1, exp_ind1)
    q_e = torch.gather(q_e, 2, exp_ind2)  # (bs, n, n, n_bond, n_bond)

    node_mask = X.sum(-1) != 0
    no_edge = (~node_mask)[:, :, None] & (~node_mask)[:, None, :]
    q_e[no_edge] = torch.tensor([1, 0, 0, 0, 0]).type_as(q_e)

    return q_e