Spaces:
Running
Running
import argparse | |
import markdown2 | |
import os | |
import sys | |
import uvicorn | |
import requests | |
from pathlib import Path | |
from typing import Union, Optional | |
from fastapi import FastAPI, Depends, HTTPException | |
from fastapi.responses import HTMLResponse | |
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials | |
from pydantic import BaseModel, Field | |
from sse_starlette.sse import EventSourceResponse, ServerSentEvent | |
from tclogger import logger | |
from constants.models import AVAILABLE_MODELS_DICTS, PRO_MODELS | |
from constants.envs import CONFIG, SECRETS | |
from networks.exceptions import HfApiException, INVALID_API_KEY_ERROR | |
from messagers.message_composer import MessageComposer | |
from mocks.stream_chat_mocker import stream_chat_mock | |
from networks.huggingface_streamer import HuggingfaceStreamer | |
from networks.huggingchat_streamer import HuggingchatStreamer | |
from networks.openai_streamer import OpenaiStreamer | |
from sentence_transformers import SentenceTransformer | |
import tiktoken | |
class EmbeddingsAPIInference: | |
def __init__(self, model_name): | |
self.model_name=model_name | |
def encode(self, x:str, api_key=None): | |
if api_key: | |
headers = {"Authorization": f"Bearer {api_key}"} | |
else: | |
headers = None | |
API_URL = "https://api-inference.huggingface.co/models/"+self.model_name | |
payload = { | |
"inputs": x, | |
"options":{"wait_for_model":True} | |
} | |
return requests.post(API_URL, headers=headers, json=payload).json() | |
class SentenceTransformer(SentenceTransformer): | |
def encode(self, **kwargs): | |
kwargs.pop("api_key", None) | |
return super().encode(**kwargs) | |
class ChatAPIApp: | |
def __init__(self): | |
self.app = FastAPI( | |
docs_url="/", | |
title=CONFIG["app_name"], | |
swagger_ui_parameters={"defaultModelsExpandDepth": -1}, | |
version=CONFIG["version"], | |
) | |
self.setup_routes() | |
self.embeddings = { | |
"mxbai-embed-large":SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1"), | |
"nomic-embed-text": SentenceTransformer("nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True), | |
"multilingual-e5-large-instruct":SentenceTransformer("intfloat/multilingual-e5-large-instruct"), | |
"intfloat/multilingual-e5-large-instruct":EmbeddingsAPIInference("intfloat/multilingual-e5-large-instruct"), | |
"mixedbread-ai/mxbai-embed-large-v1":EmbeddingsAPIInference("mixedbread-ai/mxbai-embed-large-v1") | |
} | |
def get_available_models(self): | |
return {"object": "list", "data": AVAILABLE_MODELS_DICTS} | |
def get_available_models_ollama(self): | |
ollama_models_dict = [{"name" if k == "id" else k:v for k,v in d.items()} for d in AVAILABLE_MODELS_DICTS.copy()] | |
return {"object": "list", "models":ollama_models_dict} | |
def extract_api_key( | |
credentials: HTTPAuthorizationCredentials = Depends(HTTPBearer()), | |
): | |
api_key = None | |
if credentials: | |
api_key = credentials.credentials | |
env_api_key = SECRETS["HF_LLM_API_KEY"] | |
return api_key | |
def auth_api_key(self, api_key: str): | |
env_api_key = SECRETS["HF_LLM_API_KEY"] | |
# require no api_key | |
if not env_api_key: | |
return None | |
# user provides HF_TOKEN | |
if api_key and api_key.startswith("hf_"): | |
return api_key | |
# user provides correct API_KEY | |
if str(api_key) == str(env_api_key): | |
return None | |
raise INVALID_API_KEY_ERROR | |
class ChatCompletionsPostItem(BaseModel): | |
model: str = Field( | |
default="nous-mixtral-8x7b", | |
description="(str) `nous-mixtral-8x7b`", | |
) | |
messages: list = Field( | |
default=[{"role": "user", "content": "Hello, who are you?"}], | |
description="(list) Messages", | |
) | |
temperature: Union[float, None] = Field( | |
default=0.5, | |
description="(float) Temperature", | |
) | |
top_p: Union[float, None] = Field( | |
default=0.95, | |
description="(float) top p", | |
) | |
max_tokens: Union[int, None] = Field( | |
default=-1, | |
description="(int) Max tokens", | |
) | |
use_cache: bool = Field( | |
default=False, | |
description="(bool) Use cache", | |
) | |
stream: bool = Field( | |
default=True, | |
description="(bool) Stream", | |
) | |
def chat_completions( | |
self, item: ChatCompletionsPostItem, api_key: str = Depends(extract_api_key) | |
): | |
try: | |
print(item.messages) | |
item.model = "llama3-8b" if item.model == "llama3" else item.model | |
api_key = self.auth_api_key(api_key) | |
if item.model == "gpt-3.5-turbo": | |
streamer = OpenaiStreamer() | |
stream_response = streamer.chat_response(messages=item.messages) | |
elif item.model in PRO_MODELS: | |
streamer = HuggingchatStreamer(model=item.model) | |
stream_response = streamer.chat_response( | |
messages=item.messages, | |
) | |
else: | |
streamer = HuggingfaceStreamer(model=item.model) | |
composer = MessageComposer(model=item.model) | |
composer.merge(messages=item.messages) | |
stream_response = streamer.chat_response( | |
prompt=composer.merged_str, | |
temperature=item.temperature, | |
top_p=item.top_p, | |
max_new_tokens=item.max_tokens, | |
api_key=api_key, | |
use_cache=item.use_cache, | |
) | |
if item.stream: | |
event_source_response = EventSourceResponse( | |
streamer.chat_return_generator(stream_response), | |
media_type="text/event-stream", | |
ping=2000, | |
ping_message_factory=lambda: ServerSentEvent(**{"comment": ""}), | |
) | |
return event_source_response | |
else: | |
data_response = streamer.chat_return_dict(stream_response) | |
return data_response | |
except HfApiException as e: | |
raise HTTPException(status_code=e.status_code, detail=e.detail) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
def chat_completions_ollama( | |
self, item: ChatCompletionsPostItem, api_key: str = Depends(extract_api_key) | |
): | |
try: | |
print(item.messages) | |
item.model = "llama3-8b" if item.model == "llama3" else item.model | |
api_key = self.auth_api_key(api_key) | |
if item.model == "gpt-3.5-turbo": | |
streamer = OpenaiStreamer() | |
stream_response = streamer.chat_response(messages=item.messages) | |
elif item.model in PRO_MODELS: | |
streamer = HuggingchatStreamer(model=item.model) | |
stream_response = streamer.chat_response( | |
messages=item.messages, | |
) | |
else: | |
streamer = HuggingfaceStreamer(model=item.model) | |
composer = MessageComposer(model=item.model) | |
composer.merge(messages=item.messages) | |
stream_response = streamer.chat_response( | |
prompt=composer.merged_str, | |
temperature=item.temperature, | |
top_p=item.top_p, | |
max_new_tokens=item.max_tokens, | |
api_key=api_key, | |
use_cache=item.use_cache, | |
) | |
data_response = streamer.chat_return_dict(stream_response) | |
print(data_response) | |
data_response = { | |
"model": data_response.get('model'), | |
"created_at": data_response.get('created'), | |
"message": { | |
"role": "assistant", | |
"content": data_response["choices"][0]["message"]["content"], | |
}, | |
# "response": data_response["choices"][0]["message"]["content"], | |
"done": True, | |
} | |
return data_response | |
except HfApiException as e: | |
raise HTTPException(status_code=e.status_code, detail=e.detail) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
class GenerateRequest(BaseModel): | |
model: str = Field( | |
default="nous-mixtral-8x7b", | |
description="(str) `nous-mixtral-8x7b`", | |
) | |
prompt: str = Field( | |
default="Hello, who are you?", | |
description="(str) Prompt", | |
) | |
stream: bool = Field( | |
default=False, | |
description="(bool) Stream", | |
) | |
options: dict = Field( | |
default={ | |
"temperature":0.6, | |
"top_p":0.9, | |
"max_tokens":-1, | |
"use_cache":False | |
}, | |
description="(dict) Options" | |
) | |
# temperature: Union[float, None] = Field( | |
# default=0.5, | |
# description="(float) Temperature", | |
# ) | |
# top_p: Union[float, None] = Field( | |
# default=0.95, | |
# description="(float) top p", | |
# ) | |
# max_tokens: Union[int, None] = Field( | |
# default=-1, | |
# description="(int) Max tokens", | |
# ) | |
# use_cache: bool = Field( | |
# default=False, | |
# description="(bool) Use cache", | |
# ) | |
def generate_text( | |
self, item: GenerateRequest, api_key: str = Depends(extract_api_key) | |
): | |
try: | |
item.model = "llama3-8b" if item.model == "llama3" else item.model | |
api_key = self.auth_api_key(api_key) | |
if item.model == "gpt-3.5-turbo": | |
streamer = OpenaiStreamer() | |
stream_response = streamer.chat_response(messages=[{"user":item.prompt}]) | |
elif item.model in PRO_MODELS: | |
streamer = HuggingchatStreamer(model=item.model) | |
stream_response = streamer.chat_response( | |
messages=[{"user":item.prompt}], | |
) | |
else: | |
streamer = HuggingfaceStreamer(model=item.model) | |
options = {k:v for k,v in item.options.items() if v is not None} | |
stream_response = streamer.chat_response( | |
prompt=item.prompt, | |
**options, | |
api_key=api_key, | |
# temperature=item.temperature, | |
# top_p=item.top_p, | |
# max_new_tokens=item.max_tokens, | |
# api_key=api_key, | |
# use_cache=item.use_cache, | |
# temperature=item.options.get('temperature', 0.6), | |
# top_p=item.options.get('top_p', 0.95), | |
# max_new_tokens=item.options.get('max_new_tokens', -1), | |
# api_key=api_key, | |
# use_cache=item.options.get('use_cache', False), | |
) | |
if item.stream: | |
event_source_response = EventSourceResponse( | |
streamer.ollama_return_generator(stream_response), | |
media_type="text/event-stream", | |
ping=2000, | |
ping_message_factory=lambda: ServerSentEvent(**{"comment": ""}), | |
) | |
# import json | |
# print(event_source_response, "EVENT RESPONSE FIRST") | |
# event_source_response = json.loads(str(event_source_response).split('data: ')[-1]) | |
# print(event_source_response, "EVENT RESPONSE SECOND") | |
# event_source_response = { | |
# "model": event_source_response.get('model'), | |
# "created_at": event_source_response.get('created_at'), | |
# "response": event_source_response.get('choices')[-1].get('delta').get('content'), | |
# "done": True if event_source_response.get('choices')[-1].get('finish_reason') != None else False, | |
# } | |
# print(event_source_response, "EVENT RESPONSE THIRD") | |
return event_source_response | |
else: | |
data_response = streamer.chat_return_dict(stream_response) | |
print(data_response) | |
data_response = { | |
"model": data_response.get('model'), | |
"created_at": data_response.get('created'), | |
"response": data_response["choices"][0]["message"]["content"], | |
"done": True, | |
} | |
return data_response | |
except HfApiException as e: | |
raise HTTPException(status_code=e.status_code, detail=e.detail) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
class EmbeddingRequest(BaseModel): | |
model: str | |
input: list | |
options: Optional[dict] = None | |
class OllamaEmbeddingRequest(BaseModel): | |
model: str | |
prompt: str | |
options: Optional[dict] = None | |
def get_embeddings(self, request: EmbeddingRequest, api_key: str = Depends(extract_api_key)): | |
try: | |
model = request.model | |
model_kwargs = request.options | |
encoding = tiktoken.get_encoding("cl100k_base") | |
embeddings = self.embeddings[model].encode([encoding.decode(inp) for inp in request.input], api_key=api_key)#, **model_kwargs) | |
return { | |
"object":"list", | |
"data":[ | |
{"object": "embedding", "index": i, "embedding": emb} for i,emb in enumerate(embeddings.tolist()) | |
], | |
"model": model, | |
"usage":{}, | |
} | |
except ValueError as e: | |
raise HTTPException(status_code=400, detail=str(e)) | |
def get_embeddings_ollama(self, request: OllamaEmbeddingRequest, api_key: str = Depends(extract_api_key)): | |
try: | |
model = request.model | |
model_kwargs = request.options | |
embeddings = self.embeddings[model].encode(request.prompt, api_key=api_key)#, **model_kwargs) | |
return {"embedding": embeddings.tolist()} | |
except ValueError as e: | |
raise HTTPException(status_code=400, detail=str(e)) | |
def get_readme(self): | |
readme_path = Path(__file__).parents[1] / "README.md" | |
with open(readme_path, "r", encoding="utf-8") as rf: | |
readme_str = rf.read() | |
readme_html = markdown2.markdown( | |
readme_str, extras=["table", "fenced-code-blocks", "highlightjs-lang"] | |
) | |
return readme_html | |
def setup_routes(self): | |
for prefix in ["", "/v1", "/api", "/api/v1"]: | |
if prefix in ["/api/v1"]: | |
include_in_schema = True | |
else: | |
include_in_schema = False | |
self.app.get( | |
prefix + "/models", | |
summary="Get available models", | |
include_in_schema=include_in_schema, | |
)(self.get_available_models) | |
self.app.post( | |
prefix + "/chat/completions", | |
summary="OpenAI Chat completions in conversation session", | |
include_in_schema=include_in_schema, | |
)(self.chat_completions) | |
self.app.post( | |
prefix + "/generate", | |
summary="Ollama text generation", | |
include_in_schema=include_in_schema, | |
)(self.generate_text) | |
self.app.post( | |
prefix + "/chat", | |
summary="Ollama Chat completions in conversation session", | |
include_in_schema=include_in_schema, | |
)(self.chat_completions_ollama) | |
if prefix in ["/api"]: | |
self.app.post( | |
prefix + "/embeddings", | |
summary="Ollama Get Embeddings with prompt", | |
include_in_schema=True, | |
)(self.get_embeddings_ollama) | |
else: | |
self.app.post( | |
prefix + "/embeddings", | |
summary="Get Embeddings with prompt", | |
include_in_schema=include_in_schema, | |
)(self.get_embeddings) | |
self.app.get( | |
"/api/tags", | |
summary="Get Available Models Ollama", | |
include_in_schema=True, | |
)(self.get_available_models_ollama) | |
self.app.get( | |
"/readme", | |
summary="README of HF LLM API", | |
response_class=HTMLResponse, | |
include_in_schema=False, | |
)(self.get_readme) | |
class ArgParser(argparse.ArgumentParser): | |
def __init__(self, *args, **kwargs): | |
super(ArgParser, self).__init__(*args, **kwargs) | |
self.add_argument( | |
"-s", | |
"--host", | |
type=str, | |
default=CONFIG["host"], | |
help=f"Host for {CONFIG['app_name']}", | |
) | |
self.add_argument( | |
"-p", | |
"--port", | |
type=int, | |
default=CONFIG["port"], | |
help=f"Port for {CONFIG['app_name']}", | |
) | |
self.add_argument( | |
"-d", | |
"--dev", | |
default=False, | |
action="store_true", | |
help="Run in dev mode", | |
) | |
self.args = self.parse_args(sys.argv[1:]) | |
app = ChatAPIApp().app | |
if __name__ == "__main__": | |
args = ArgParser().args | |
if args.dev: | |
uvicorn.run("__main__:app", host=args.host, port=args.port, reload=True) | |
else: | |
uvicorn.run("__main__:app", host=args.host, port=args.port, reload=False) | |
# python -m apis.chat_api # [Docker] on product mode | |
# python -m apis.chat_api -d # [Dev] on develop mode | |