Spaces:
Running
Running
File size: 19,076 Bytes
e28221f 6e2fad5 bc384a3 e28221f bc384a3 1ff3bbb e28221f 6e2fad5 a1a3cef 40ba0ea 97b108f 6e2fad5 2da6968 3a09006 489b65b deca16d 06e3150 97b108f 40ba0ea 3a09006 489b65b 97b108f 3125c87 06e3150 3125c87 3a09006 b4970eb 87bcf8e 3a09006 844397e 1ff3bbb 844397e 1ff3bbb 844397e 827aa76 6f4d127 844397e 6f4d127 1ff3bbb 3a09006 deca16d 3a09006 deca16d 3a09006 ecec9fc 827aa76 844397e ecec9fc b4970eb 3a09006 40ba0ea 3a09006 55b4f54 6072755 55b4f54 2da6968 97b108f 2da6968 8ab8ca6 2da6968 8ab8ca6 97b108f 8ab8ca6 97b108f 2da6968 3a09006 214fb7b 3a09006 a54e7a6 e2b245b 3a09006 403b8cf a54e7a6 1b9f698 3a09006 e2b245b 3a09006 2da6968 97b108f 9dffcaf 765a3f6 97b108f 162773e ac2d561 c70c206 ac2d561 162773e ee910d2 e37b4b3 ee910d2 9a9e4a4 ee910d2 f9ac435 28bce37 f9ac435 ee910d2 765a3f6 ee910d2 f9ac435 ee910d2 f9ac435 4424f88 f9ac435 28bce37 ee910d2 1fcd6c7 ee910d2 4070db8 6fe3f86 4070db8 ee910d2 e68ef65 63e4b77 a4e2086 c83c114 198a4f7 63e4b77 ee910d2 3a09006 ecec9fc bd6a555 87bcf8e bd6a555 ecec9fc 33e0d19 fb1e6a9 87bcf8e 844397e fb1e6a9 827aa76 fb1e6a9 bd6a555 ecec9fc 844397e 827aa76 ecec9fc b4970eb bb2a1eb b4970eb bb2a1eb b4970eb bb2a1eb b4970eb bb2a1eb b4970eb bb2a1eb b4970eb bb2a1eb ecec9fc 6e2fad5 3a09006 245d9fd a2d3414 3a09006 06a233d 3a09006 b4970eb 3a09006 ee910d2 06a233d 3a09006 ecec9fc d98f847 ee910d2 d98f847 ee910d2 d98f847 ee910d2 d98f847 162773e fb1e6a9 1fe16ba feb8c06 55b4f54 1fe16ba 6e2fad5 3a09006 e28221f deca16d e28221f deca16d e28221f deca16d e28221f 3a09006 e28221f deca16d e28221f deca16d e28221f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
import argparse
import markdown2
import os
import sys
import uvicorn
import requests
from pathlib import Path
from typing import Union, Optional
from fastapi import FastAPI, Depends, HTTPException
from fastapi.responses import HTMLResponse
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel, Field
from sse_starlette.sse import EventSourceResponse, ServerSentEvent
from tclogger import logger
from constants.models import AVAILABLE_MODELS_DICTS, PRO_MODELS
from constants.envs import CONFIG, SECRETS
from networks.exceptions import HfApiException, INVALID_API_KEY_ERROR
from messagers.message_composer import MessageComposer
from mocks.stream_chat_mocker import stream_chat_mock
from networks.huggingface_streamer import HuggingfaceStreamer
from networks.huggingchat_streamer import HuggingchatStreamer
from networks.openai_streamer import OpenaiStreamer
from sentence_transformers import SentenceTransformer, CrossEncoder
import tiktoken
class EmbeddingsAPIInference:
def __init__(self, model_name):
self.model_name=model_name
def encode(self, x:str, api_key=None):
if api_key:
headers = {"Authorization": f"Bearer {api_key}"}
else:
headers = None
API_URL = "https://api-inference.huggingface.co/models/"+self.model_name
payload = {
"inputs": x,
"options":{"wait_for_model":True}
}
return requests.post(API_URL, headers=headers, json=payload).json()
class SentenceTransformerLocal(SentenceTransformer):
def encode(self, *args, **kwargs):
kwargs.pop("api_key", None)
return super().encode(*args, **kwargs).tolist()
class ChatAPIApp:
def __init__(self):
self.app = FastAPI(
docs_url="/",
title=CONFIG["app_name"],
swagger_ui_parameters={"defaultModelsExpandDepth": -1},
version=CONFIG["version"],
)
self.setup_routes()
self.embeddings = {
"mxbai-embed-large":SentenceTransformerLocal("mixedbread-ai/mxbai-embed-large-v1"),
"nomic-embed-text": SentenceTransformerLocal("nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True),
"multilingual-e5-large-instruct":SentenceTransformerLocal("intfloat/multilingual-e5-large-instruct"),
"intfloat/multilingual-e5-large-instruct":EmbeddingsAPIInference("intfloat/multilingual-e5-large-instruct"),
"mixedbread-ai/mxbai-embed-large-v1":EmbeddingsAPIInference("mixedbread-ai/mxbai-embed-large-v1")
}
self.rerank = {
"bge-reranker-v2-m3":CrossEncoder("BAAI/bge-reranker-v2-m3")
}
def get_available_models(self):
return {"object": "list", "data": AVAILABLE_MODELS_DICTS}
def get_available_models_ollama(self):
ollama_models_dict = [{"name" if k == "id" else k:v for k,v in d.items()} for d in AVAILABLE_MODELS_DICTS.copy()]
return {"object": "list", "models":ollama_models_dict}
def extract_api_key(
credentials: HTTPAuthorizationCredentials = Depends(HTTPBearer()),
):
api_key = None
if credentials:
api_key = credentials.credentials
env_api_key = SECRETS["HF_LLM_API_KEY"]
return api_key
def auth_api_key(self, api_key: str):
env_api_key = SECRETS["HF_LLM_API_KEY"]
# require no api_key
if not env_api_key:
return None
# user provides HF_TOKEN
if api_key and api_key.startswith("hf_"):
return api_key
# user provides correct API_KEY
if str(api_key) == str(env_api_key):
return None
raise INVALID_API_KEY_ERROR
class ChatCompletionsPostItem(BaseModel):
model: str = Field(
default="nous-mixtral-8x7b",
description="(str) `nous-mixtral-8x7b`",
)
messages: list = Field(
default=[{"role": "user", "content": "Hello, who are you?"}],
description="(list) Messages",
)
temperature: Union[float, None] = Field(
default=0.5,
description="(float) Temperature",
)
top_p: Union[float, None] = Field(
default=0.95,
description="(float) top p",
)
max_tokens: Union[int, None] = Field(
default=-1,
description="(int) Max tokens",
)
use_cache: bool = Field(
default=False,
description="(bool) Use cache",
)
stream: bool = Field(
default=True,
description="(bool) Stream",
)
def chat_completions(
self, item: ChatCompletionsPostItem, api_key: str = Depends(extract_api_key)
):
try:
print(item.messages)
item.model = "llama3-8b" if item.model == "llama3" else item.model
api_key = self.auth_api_key(api_key)
if item.model == "gpt-3.5-turbo":
streamer = OpenaiStreamer()
stream_response = streamer.chat_response(messages=item.messages)
elif item.model in PRO_MODELS:
streamer = HuggingchatStreamer(model=item.model)
stream_response = streamer.chat_response(
messages=item.messages,
)
else:
streamer = HuggingfaceStreamer(model=item.model)
composer = MessageComposer(model=item.model)
composer.merge(messages=item.messages)
stream_response = streamer.chat_response(
prompt=composer.merged_str,
temperature=item.temperature,
top_p=item.top_p,
max_new_tokens=item.max_tokens,
api_key=api_key,
use_cache=item.use_cache,
)
if item.stream:
event_source_response = EventSourceResponse(
streamer.chat_return_generator(stream_response),
media_type="text/event-stream",
ping=2000,
ping_message_factory=lambda: ServerSentEvent(**{"comment": ""}),
)
return event_source_response
else:
data_response = streamer.chat_return_dict(stream_response)
return data_response
except HfApiException as e:
raise HTTPException(status_code=e.status_code, detail=e.detail)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
def chat_completions_ollama(
self, item: ChatCompletionsPostItem, api_key: str = Depends(extract_api_key)
):
try:
print(item.messages)
item.model = "llama3-8b" if item.model == "llama3" else item.model
api_key = self.auth_api_key(api_key)
if item.model == "gpt-3.5-turbo":
streamer = OpenaiStreamer()
stream_response = streamer.chat_response(messages=item.messages)
elif item.model in PRO_MODELS:
streamer = HuggingchatStreamer(model=item.model)
stream_response = streamer.chat_response(
messages=item.messages,
)
else:
streamer = HuggingfaceStreamer(model=item.model)
composer = MessageComposer(model=item.model)
composer.merge(messages=item.messages)
stream_response = streamer.chat_response(
prompt=composer.merged_str,
temperature=item.temperature,
top_p=item.top_p,
max_new_tokens=item.max_tokens,
api_key=api_key,
use_cache=item.use_cache,
)
data_response = streamer.chat_return_dict(stream_response)
print(data_response)
data_response = {
"model": data_response.get('model'),
"created_at": data_response.get('created'),
"message": {
"role": "assistant",
"content": data_response["choices"][0]["message"]["content"],
},
# "response": data_response["choices"][0]["message"]["content"],
"done": True,
}
return data_response
except HfApiException as e:
raise HTTPException(status_code=e.status_code, detail=e.detail)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
class GenerateRequest(BaseModel):
model: str = Field(
default="nous-mixtral-8x7b",
description="(str) `nous-mixtral-8x7b`",
)
prompt: str = Field(
default="Hello, who are you?",
description="(str) Prompt",
)
stream: bool = Field(
default=False,
description="(bool) Stream",
)
options: dict = Field(
default={
"temperature":0.6,
"top_p":0.9,
"max_tokens":-1,
"use_cache":False
},
description="(dict) Options"
)
# temperature: Union[float, None] = Field(
# default=0.5,
# description="(float) Temperature",
# )
# top_p: Union[float, None] = Field(
# default=0.95,
# description="(float) top p",
# )
# max_tokens: Union[int, None] = Field(
# default=-1,
# description="(int) Max tokens",
# )
# use_cache: bool = Field(
# default=False,
# description="(bool) Use cache",
# )
def generate_text(
self, item: GenerateRequest, api_key: str = Depends(extract_api_key)
):
try:
item.model = "llama3-8b" if item.model == "llama3" else item.model
api_key = self.auth_api_key(api_key)
if item.model == "gpt-3.5-turbo":
streamer = OpenaiStreamer()
stream_response = streamer.chat_response(messages=[{"user":item.prompt}])
elif item.model in PRO_MODELS:
streamer = HuggingchatStreamer(model=item.model)
stream_response = streamer.chat_response(
messages=[{"user":item.prompt}],
)
else:
streamer = HuggingfaceStreamer(model=item.model)
options = {k:v for k,v in item.options.items() if v is not None}
stream_response = streamer.chat_response(
prompt=item.prompt,
**options,
api_key=api_key,
# temperature=item.temperature,
# top_p=item.top_p,
# max_new_tokens=item.max_tokens,
# api_key=api_key,
# use_cache=item.use_cache,
# temperature=item.options.get('temperature', 0.6),
# top_p=item.options.get('top_p', 0.95),
# max_new_tokens=item.options.get('max_new_tokens', -1),
# api_key=api_key,
# use_cache=item.options.get('use_cache', False),
)
if item.stream:
event_source_response = EventSourceResponse(
streamer.ollama_return_generator(stream_response),
media_type="text/event-stream",
ping=2000,
ping_message_factory=lambda: ServerSentEvent(**{"comment": ""}),
)
# import json
# print(event_source_response, "EVENT RESPONSE FIRST")
# event_source_response = json.loads(str(event_source_response).split('data: ')[-1])
# print(event_source_response, "EVENT RESPONSE SECOND")
# event_source_response = {
# "model": event_source_response.get('model'),
# "created_at": event_source_response.get('created_at'),
# "response": event_source_response.get('choices')[-1].get('delta').get('content'),
# "done": True if event_source_response.get('choices')[-1].get('finish_reason') != None else False,
# }
# print(event_source_response, "EVENT RESPONSE THIRD")
return event_source_response
else:
data_response = streamer.chat_return_dict(stream_response)
print(data_response)
data_response = {
"model": data_response.get('model'),
"created_at": data_response.get('created'),
"response": data_response["choices"][0]["message"]["content"],
"done": True,
}
return data_response
except HfApiException as e:
raise HTTPException(status_code=e.status_code, detail=e.detail)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
class EmbeddingRequest(BaseModel):
model: str
input: list
options: Optional[dict] = None
class OllamaEmbeddingRequest(BaseModel):
model: str
prompt: str
options: Optional[dict] = None
def get_embeddings(self, request: EmbeddingRequest, api_key: str = Depends(extract_api_key)):
try:
model = request.model
model_kwargs = request.options
encoding = tiktoken.get_encoding("cl100k_base")
embeddings = self.embeddings[model].encode([encoding.decode(inp) for inp in request.input], api_key=api_key)#, **model_kwargs)
return {
"object":"list",
"data":[
{"object": "embedding", "index": i, "embedding": emb} for i,emb in enumerate(embeddings)#.tolist())
],
"model": model,
"usage":{},
}
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
def get_embeddings_ollama(self, request: OllamaEmbeddingRequest, api_key: str = Depends(extract_api_key)):
try:
model = request.model
model_kwargs = request.options
embeddings = self.embeddings[model].encode(request.prompt, api_key=api_key)#, **model_kwargs)
return {"embedding": embeddings}#.tolist()}
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
class RerankRequest(BaseModel):
model: str
input: str
documents: list
return_documents: bool
top_k: Optional[int]=None
def _score_to_list(self, x):
x['score'] = x['score'].tolist()
return x
def get_rerank(self, request: RerankRequest, api_key: str = Depends(extract_api_key)):
ranks = self.rerank[request.model].rank(
request.input,
request.documents,
top_k=request.top_k,
return_documents=request.return_documents
)
return [self._score_to_list(x) for x in ranks]
def get_readme(self):
readme_path = Path(__file__).parents[1] / "README.md"
with open(readme_path, "r", encoding="utf-8") as rf:
readme_str = rf.read()
readme_html = markdown2.markdown(
readme_str, extras=["table", "fenced-code-blocks", "highlightjs-lang"]
)
return readme_html
def setup_routes(self):
for prefix in ["", "/v1", "/api", "/api/v1"]:
if prefix in ["/api/v1"]:
include_in_schema = True
else:
include_in_schema = False
self.app.get(
prefix + "/models",
summary="Get available models",
include_in_schema=include_in_schema,
)(self.get_available_models)
self.app.post(
prefix+"/rerank",
summary="Rerank documents",
include_in_schema=include_in_schema,
)(self.get_rerank)
self.app.post(
prefix + "/chat/completions",
summary="OpenAI Chat completions in conversation session",
include_in_schema=include_in_schema,
)(self.chat_completions)
self.app.post(
prefix + "/generate",
summary="Ollama text generation",
include_in_schema=include_in_schema,
)(self.generate_text)
self.app.post(
prefix + "/chat",
summary="Ollama Chat completions in conversation session",
include_in_schema=include_in_schema,
)(self.chat_completions_ollama)
if prefix in ["/api"]:
self.app.post(
prefix + "/embeddings",
summary="Ollama Get Embeddings with prompt",
include_in_schema=True,
)(self.get_embeddings_ollama)
else:
self.app.post(
prefix + "/embeddings",
summary="Get Embeddings with prompt",
include_in_schema=include_in_schema,
)(self.get_embeddings)
self.app.get(
"/api/tags",
summary="Get Available Models Ollama",
include_in_schema=True,
)(self.get_available_models_ollama)
self.app.get(
"/readme",
summary="README of HF LLM API",
response_class=HTMLResponse,
include_in_schema=False,
)(self.get_readme)
class ArgParser(argparse.ArgumentParser):
def __init__(self, *args, **kwargs):
super(ArgParser, self).__init__(*args, **kwargs)
self.add_argument(
"-s",
"--host",
type=str,
default=CONFIG["host"],
help=f"Host for {CONFIG['app_name']}",
)
self.add_argument(
"-p",
"--port",
type=int,
default=CONFIG["port"],
help=f"Port for {CONFIG['app_name']}",
)
self.add_argument(
"-d",
"--dev",
default=False,
action="store_true",
help="Run in dev mode",
)
self.args = self.parse_args(sys.argv[1:])
app = ChatAPIApp().app
if __name__ == "__main__":
args = ArgParser().args
if args.dev:
uvicorn.run("__main__:app", host=args.host, port=args.port, reload=True)
else:
uvicorn.run("__main__:app", host=args.host, port=args.port, reload=False)
# python -m apis.chat_api # [Docker] on product mode
# python -m apis.chat_api -d # [Dev] on develop mode
|