File size: 6,434 Bytes
e28221f
6e2fad5
bc384a3
e28221f
bc384a3
e28221f
6e2fad5
40ba0ea
 
2da6968
6e2fad5
2da6968
3a09006
489b65b
deca16d
 
06e3150
deca16d
40ba0ea
3a09006
489b65b
3125c87
06e3150
3125c87
3a09006
 
 
 
 
 
deca16d
3a09006
deca16d
3a09006
 
 
 
40ba0ea
3a09006
2da6968
 
 
 
 
8ab8ca6
2da6968
8ab8ca6
2da6968
8ab8ca6
 
 
 
 
 
1b9f698
8ab8ca6
 
 
2da6968
3a09006
 
 
 
 
 
 
 
 
a54e7a6
e2b245b
3a09006
 
403b8cf
 
 
 
a54e7a6
1b9f698
3a09006
 
e2b245b
 
 
 
3a09006
 
 
 
 
2da6968
 
 
d36d623
cd6b52a
 
06e3150
 
 
 
 
cd6b52a
3125c87
 
cd6b52a
 
 
 
 
 
 
 
 
 
d2b20f2
 
 
 
 
 
 
 
 
 
 
3a09006
6e2fad5
 
 
 
 
 
 
 
 
3a09006
245d9fd
a2d3414
 
 
 
 
3a09006
 
 
06a233d
3a09006
 
 
 
 
06a233d
3a09006
6e2fad5
 
 
 
 
 
3a09006
 
e28221f
 
 
 
 
 
deca16d
e28221f
deca16d
 
e28221f
 
 
 
 
deca16d
 
e28221f
 
 
 
 
 
 
 
 
 
 
 
 
3a09006
 
 
e28221f
 
deca16d
e28221f
deca16d
e28221f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import markdown2
import os
import sys
import uvicorn

from pathlib import Path
from typing import Union

from fastapi import FastAPI, Depends
from fastapi.responses import HTMLResponse
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel, Field
from sse_starlette.sse import EventSourceResponse, ServerSentEvent
from tclogger import logger

from constants.models import AVAILABLE_MODELS_DICTS, PRO_MODELS
from constants.envs import CONFIG

from messagers.message_composer import MessageComposer
from mocks.stream_chat_mocker import stream_chat_mock
from networks.huggingface_streamer import HuggingfaceStreamer
from networks.huggingchat_streamer import HuggingchatStreamer
from networks.openai_streamer import OpenaiStreamer


class ChatAPIApp:
    def __init__(self):
        self.app = FastAPI(
            docs_url="/",
            title=CONFIG["app_name"],
            swagger_ui_parameters={"defaultModelsExpandDepth": -1},
            version=CONFIG["version"],
        )
        self.setup_routes()

    def get_available_models(self):
        return {"object": "list", "data": AVAILABLE_MODELS_DICTS}

    def extract_api_key(
        credentials: HTTPAuthorizationCredentials = Depends(
            HTTPBearer(auto_error=False)
        ),
    ):
        api_key = None
        if credentials:
            api_key = credentials.credentials
        else:
            api_key = os.getenv("HF_TOKEN")

        if api_key:
            if api_key.startswith("hf_"):
                return api_key
            else:
                logger.warn(f"Invalid HF Token!")
        else:
            logger.warn("Not provide HF Token!")
        return None

    class ChatCompletionsPostItem(BaseModel):
        model: str = Field(
            default="mixtral-8x7b",
            description="(str) `mixtral-8x7b`",
        )
        messages: list = Field(
            default=[{"role": "user", "content": "Hello, who are you?"}],
            description="(list) Messages",
        )
        temperature: Union[float, None] = Field(
            default=0.5,
            description="(float) Temperature",
        )
        top_p: Union[float, None] = Field(
            default=0.95,
            description="(float) top p",
        )
        max_tokens: Union[int, None] = Field(
            default=-1,
            description="(int) Max tokens",
        )
        use_cache: bool = Field(
            default=False,
            description="(bool) Use cache",
        )
        stream: bool = Field(
            default=True,
            description="(bool) Stream",
        )

    def chat_completions(
        self, item: ChatCompletionsPostItem, api_key: str = Depends(extract_api_key)
    ):
        if item.model == "gpt-3.5-turbo":
            streamer = OpenaiStreamer()
            stream_response = streamer.chat_response(messages=item.messages)
        elif item.model in PRO_MODELS:
            streamer = HuggingchatStreamer(model=item.model)
            stream_response = streamer.chat_response(
                messages=item.messages,
            )
        else:
            streamer = HuggingfaceStreamer(model=item.model)
            composer = MessageComposer(model=item.model)
            composer.merge(messages=item.messages)
            stream_response = streamer.chat_response(
                prompt=composer.merged_str,
                temperature=item.temperature,
                top_p=item.top_p,
                max_new_tokens=item.max_tokens,
                api_key=api_key,
                use_cache=item.use_cache,
            )

        if item.stream:
            event_source_response = EventSourceResponse(
                streamer.chat_return_generator(stream_response),
                media_type="text/event-stream",
                ping=2000,
                ping_message_factory=lambda: ServerSentEvent(**{"comment": ""}),
            )
            return event_source_response
        else:
            data_response = streamer.chat_return_dict(stream_response)
            return data_response

    def get_readme(self):
        readme_path = Path(__file__).parents[1] / "README.md"
        with open(readme_path, "r", encoding="utf-8") as rf:
            readme_str = rf.read()
        readme_html = markdown2.markdown(
            readme_str, extras=["table", "fenced-code-blocks", "highlightjs-lang"]
        )
        return readme_html

    def setup_routes(self):
        for prefix in ["", "/v1", "/api", "/api/v1"]:
            if prefix in ["/api/v1"]:
                include_in_schema = True
            else:
                include_in_schema = False

            self.app.get(
                prefix + "/models",
                summary="Get available models",
                include_in_schema=include_in_schema,
            )(self.get_available_models)

            self.app.post(
                prefix + "/chat/completions",
                summary="Chat completions in conversation session",
                include_in_schema=include_in_schema,
            )(self.chat_completions)
        self.app.get(
            "/readme",
            summary="README of HF LLM API",
            response_class=HTMLResponse,
            include_in_schema=False,
        )(self.get_readme)


class ArgParser(argparse.ArgumentParser):
    def __init__(self, *args, **kwargs):
        super(ArgParser, self).__init__(*args, **kwargs)

        self.add_argument(
            "-s",
            "--host",
            type=str,
            default=CONFIG["host"],
            help=f"Host for {CONFIG['app_name']}",
        )
        self.add_argument(
            "-p",
            "--port",
            type=int,
            default=CONFIG["port"],
            help=f"Port for {CONFIG['app_name']}",
        )

        self.add_argument(
            "-d",
            "--dev",
            default=False,
            action="store_true",
            help="Run in dev mode",
        )

        self.args = self.parse_args(sys.argv[1:])


app = ChatAPIApp().app

if __name__ == "__main__":
    args = ArgParser().args
    if args.dev:
        uvicorn.run("__main__:app", host=args.host, port=args.port, reload=True)
    else:
        uvicorn.run("__main__:app", host=args.host, port=args.port, reload=False)

    # python -m apis.chat_api      # [Docker] on product mode
    # python -m apis.chat_api -d   # [Dev]    on develop mode