CoCa / app.py
liamcoyle's picture
Duplicate from laion/CoCa
bfbb185
import pathlib
import gradio as gr
import open_clip
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model, _, transform = open_clip.create_model_and_transforms(
"coca_ViT-L-14",
pretrained="mscoco_finetuned_laion2B-s13B-b90k"
)
model.to(device)
def output_generate(image):
im = transform(image).unsqueeze(0).to(device)
with torch.no_grad(), torch.cuda.amp.autocast():
generated = model.generate(im, seq_len=20)
return open_clip.decode(generated[0].detach()).split("<end_of_text>")[0].replace("<start_of_text>", "")
paths = sorted(pathlib.Path("images").glob("*.jpg"))
iface = gr.Interface(
fn=output_generate,
inputs=gr.Image(label="Input image", type="pil"),
outputs=gr.Text(label="Caption output"),
title="CoCa: Contrastive Captioners",
description=(
"""<br> An open source implementation of <strong>CoCa: Contrastive Captioners are Image-Text Foundation Models</strong> <a href=https://arxiv.org/abs/2205.01917>https://arxiv.org/abs/2205.01917.</a>
<br> Built using <a href=https://github.com/mlfoundations/open_clip>open_clip</a> with an effort from <a href=https://laion.ai/>LAION</a>.
<br> For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.<a href="https://huggingface.co/spaces/laion/CoCa?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>"""
),
article="""""",
examples=[path.as_posix() for path in paths],
)
iface.launch()