|
import pathlib |
|
|
|
import gradio as gr |
|
import open_clip |
|
import torch |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
model, _, transform = open_clip.create_model_and_transforms( |
|
"coca_ViT-L-14", |
|
pretrained="mscoco_finetuned_laion2B-s13B-b90k" |
|
) |
|
model.to(device) |
|
|
|
|
|
def output_generate(image): |
|
im = transform(image).unsqueeze(0).to(device) |
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
generated = model.generate(im, seq_len=20) |
|
return open_clip.decode(generated[0].detach()).split("<end_of_text>")[0].replace("<start_of_text>", "") |
|
|
|
|
|
paths = sorted(pathlib.Path("images").glob("*.jpg")) |
|
|
|
iface = gr.Interface( |
|
fn=output_generate, |
|
inputs=gr.Image(label="Input image", type="pil"), |
|
outputs=gr.Text(label="Caption output"), |
|
title="CoCa: Contrastive Captioners", |
|
description=( |
|
"""<br> An open source implementation of <strong>CoCa: Contrastive Captioners are Image-Text Foundation Models</strong> <a href=https://arxiv.org/abs/2205.01917>https://arxiv.org/abs/2205.01917.</a> |
|
<br> Built using <a href=https://github.com/mlfoundations/open_clip>open_clip</a> with an effort from <a href=https://laion.ai/>LAION</a>. |
|
<br> For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.<a href="https://huggingface.co/spaces/laion/CoCa?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>""" |
|
), |
|
article="""""", |
|
examples=[path.as_posix() for path in paths], |
|
) |
|
iface.launch() |
|
|