|
""" |
|
A model worker that executes the model. |
|
""" |
|
import argparse |
|
import base64 |
|
import gc |
|
import json |
|
import os |
|
from typing import List, Optional |
|
import uuid |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import set_seed |
|
import uvicorn |
|
|
|
from fastchat.constants import ErrorCode, SERVER_ERROR_MSG |
|
from fastchat.model.model_adapter import ( |
|
load_model, |
|
add_model_args, |
|
get_generate_stream_function, |
|
) |
|
from fastchat.modules.awq import AWQConfig |
|
from fastchat.modules.exllama import ExllamaConfig |
|
from fastchat.modules.xfastertransformer import XftConfig |
|
from fastchat.modules.gptq import GptqConfig |
|
from fastchat.serve.base_model_worker import BaseModelWorker, app |
|
from fastchat.utils import ( |
|
build_logger, |
|
get_context_length, |
|
str_to_torch_dtype, |
|
) |
|
|
|
worker_id = str(uuid.uuid4())[:8] |
|
logger = build_logger("model_worker", f"model_worker_{worker_id}.log") |
|
|
|
|
|
class ModelWorker(BaseModelWorker): |
|
def __init__( |
|
self, |
|
controller_addr: str, |
|
worker_addr: str, |
|
worker_id: str, |
|
model_path: str, |
|
model_names: List[str], |
|
limit_worker_concurrency: int, |
|
no_register: bool, |
|
device: str, |
|
num_gpus: int, |
|
max_gpu_memory: str, |
|
revision: str = None, |
|
dtype: Optional[torch.dtype] = None, |
|
load_8bit: bool = False, |
|
cpu_offloading: bool = False, |
|
gptq_config: Optional[GptqConfig] = None, |
|
awq_config: Optional[AWQConfig] = None, |
|
exllama_config: Optional[ExllamaConfig] = None, |
|
xft_config: Optional[XftConfig] = None, |
|
stream_interval: int = 2, |
|
conv_template: Optional[str] = None, |
|
embed_in_truncate: bool = False, |
|
seed: Optional[int] = None, |
|
debug: bool = False, |
|
**kwargs, |
|
): |
|
super().__init__( |
|
controller_addr, |
|
worker_addr, |
|
worker_id, |
|
model_path, |
|
model_names, |
|
limit_worker_concurrency, |
|
conv_template=conv_template, |
|
) |
|
|
|
logger.info(f"Loading the model {self.model_names} on worker {worker_id} ...") |
|
self.model, self.tokenizer = load_model( |
|
model_path, |
|
revision=revision, |
|
device=device, |
|
num_gpus=num_gpus, |
|
max_gpu_memory=max_gpu_memory, |
|
dtype=dtype, |
|
load_8bit=load_8bit, |
|
cpu_offloading=cpu_offloading, |
|
gptq_config=gptq_config, |
|
awq_config=awq_config, |
|
exllama_config=exllama_config, |
|
xft_config=xft_config, |
|
debug=debug, |
|
) |
|
self.device = device |
|
if self.tokenizer.pad_token == None: |
|
self.tokenizer.pad_token = self.tokenizer.eos_token |
|
self.context_len = get_context_length(self.model.config) |
|
self.generate_stream_func = get_generate_stream_function(self.model, model_path) |
|
self.stream_interval = stream_interval |
|
self.embed_in_truncate = embed_in_truncate |
|
self.seed = seed |
|
|
|
if not no_register: |
|
self.init_heart_beat() |
|
|
|
def generate_stream_gate(self, params): |
|
if self.device == "npu": |
|
import torch_npu |
|
|
|
torch_npu.npu.set_device("npu:0") |
|
self.call_ct += 1 |
|
|
|
try: |
|
if self.seed is not None: |
|
set_seed(self.seed) |
|
for output in self.generate_stream_func( |
|
self.model, |
|
self.tokenizer, |
|
params, |
|
self.device, |
|
self.context_len, |
|
self.stream_interval, |
|
): |
|
ret = { |
|
"text": output["text"], |
|
"error_code": 0, |
|
} |
|
if "usage" in output: |
|
ret["usage"] = output["usage"] |
|
if "finish_reason" in output: |
|
ret["finish_reason"] = output["finish_reason"] |
|
if "logprobs" in output: |
|
ret["logprobs"] = output["logprobs"] |
|
yield json.dumps(ret).encode() + b"\0" |
|
except torch.cuda.OutOfMemoryError as e: |
|
ret = { |
|
"text": f"{SERVER_ERROR_MSG}\n\n({e})", |
|
"error_code": ErrorCode.CUDA_OUT_OF_MEMORY, |
|
} |
|
yield json.dumps(ret).encode() + b"\0" |
|
except (ValueError, RuntimeError) as e: |
|
ret = { |
|
"text": f"{SERVER_ERROR_MSG}\n\n({e})", |
|
"error_code": ErrorCode.INTERNAL_ERROR, |
|
} |
|
yield json.dumps(ret).encode() + b"\0" |
|
|
|
def generate_gate(self, params): |
|
for x in self.generate_stream_gate(params): |
|
pass |
|
return json.loads(x[:-1].decode()) |
|
|
|
def __process_embed_chunk(self, input_ids, attention_mask, **model_type_dict): |
|
if model_type_dict.get("is_bert"): |
|
model_output = self.model(input_ids) |
|
if model_type_dict.get("is_robert"): |
|
data = model_output.last_hidden_state |
|
else: |
|
data = model_output[0] |
|
elif model_type_dict.get("is_t5"): |
|
model_output = self.model(input_ids, decoder_input_ids=input_ids) |
|
data = model_output.encoder_last_hidden_state |
|
else: |
|
model_output = self.model(input_ids, output_hidden_states=True) |
|
if model_type_dict.get("is_chatglm"): |
|
data = model_output.hidden_states[-1].transpose(0, 1) |
|
else: |
|
data = model_output.hidden_states[-1] |
|
|
|
if hasattr(self.model, "use_cls_pooling") and self.model.use_cls_pooling: |
|
sum_embeddings = data[:, 0] |
|
else: |
|
mask = attention_mask.unsqueeze(-1).expand(data.size()).float() |
|
masked_embeddings = data * mask |
|
sum_embeddings = torch.sum(masked_embeddings, dim=1) |
|
token_num = torch.sum(attention_mask).item() |
|
|
|
return sum_embeddings, token_num |
|
|
|
def __encode_base64(self, embeddings: torch.Tensor) -> List[str]: |
|
embeddings = embeddings.cpu() |
|
return [ |
|
base64.b64encode(e.numpy().tobytes()).decode("utf-8") for e in embeddings |
|
] |
|
|
|
@torch.inference_mode() |
|
def get_embeddings(self, params): |
|
self.call_ct += 1 |
|
|
|
try: |
|
tokenizer = self.tokenizer |
|
ret = {"embedding": [], "token_num": 0} |
|
|
|
model_type_dict = { |
|
"is_llama": "llama" in str(type(self.model)), |
|
"is_t5": "t5" in str(type(self.model)), |
|
"is_chatglm": "chatglm" in str(type(self.model)), |
|
"is_bert": "bert" in str(type(self.model)), |
|
"is_robert": "robert" in str(type(self.model)), |
|
} |
|
|
|
if self.embed_in_truncate: |
|
encoding = tokenizer.batch_encode_plus( |
|
params["input"], |
|
padding=True, |
|
truncation="longest_first", |
|
return_tensors="pt", |
|
max_length=self.context_len, |
|
) |
|
else: |
|
encoding = tokenizer.batch_encode_plus( |
|
params["input"], padding=True, return_tensors="pt" |
|
) |
|
input_ids = encoding["input_ids"].to(self.device) |
|
attention_mask = input_ids != tokenizer.pad_token_id |
|
|
|
base64_encode = params.get("encoding_format", None) |
|
|
|
if self.embed_in_truncate: |
|
embedding, token_num = self.__process_embed_chunk( |
|
input_ids, attention_mask, **model_type_dict |
|
) |
|
if ( |
|
not hasattr(self.model, "use_cls_pooling") |
|
or not self.model.use_cls_pooling |
|
): |
|
embedding = embedding / token_num |
|
normalized_embeddings = F.normalize(embedding, p=2, dim=1) |
|
ret["token_num"] = token_num |
|
else: |
|
all_embeddings = [] |
|
all_token_num = 0 |
|
for i in range(0, input_ids.size(1), self.context_len): |
|
chunk_input_ids = input_ids[:, i : i + self.context_len] |
|
chunk_attention_mask = attention_mask[:, i : i + self.context_len] |
|
|
|
|
|
if ( |
|
hasattr(self.model, "use_cls_pooling") |
|
and self.model.use_cls_pooling |
|
): |
|
cls_tokens = ( |
|
torch.zeros( |
|
(chunk_input_ids.size(0), 1), |
|
dtype=chunk_input_ids.dtype, |
|
device=chunk_input_ids.device, |
|
) |
|
+ tokenizer.cls_token_id |
|
) |
|
chunk_input_ids = torch.cat( |
|
[cls_tokens, chunk_input_ids], dim=-1 |
|
) |
|
mask = torch.ones( |
|
(chunk_attention_mask.size(0), 1), |
|
dtype=chunk_attention_mask.dtype, |
|
device=chunk_attention_mask.device, |
|
) |
|
chunk_attention_mask = torch.cat( |
|
[mask, chunk_attention_mask], dim=-1 |
|
) |
|
|
|
chunk_embeddings, token_num = self.__process_embed_chunk( |
|
chunk_input_ids, chunk_attention_mask, **model_type_dict |
|
) |
|
if ( |
|
hasattr(self.model, "use_cls_pooling") |
|
and self.model.use_cls_pooling |
|
): |
|
all_embeddings.append(chunk_embeddings * token_num) |
|
else: |
|
all_embeddings.append(chunk_embeddings) |
|
all_token_num += token_num |
|
|
|
all_embeddings_tensor = torch.stack(all_embeddings) |
|
embedding = torch.sum(all_embeddings_tensor, dim=0) / all_token_num |
|
normalized_embeddings = F.normalize(embedding, p=2, dim=1) |
|
|
|
ret["token_num"] = all_token_num |
|
|
|
if base64_encode == "base64": |
|
out_embeddings = self.__encode_base64(normalized_embeddings) |
|
else: |
|
out_embeddings = normalized_embeddings.tolist() |
|
ret["embedding"] = out_embeddings |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
if self.device == "xpu": |
|
torch.xpu.empty_cache() |
|
if self.device == "npu": |
|
torch.npu.empty_cache() |
|
except torch.cuda.OutOfMemoryError as e: |
|
ret = { |
|
"text": f"{SERVER_ERROR_MSG}\n\n({e})", |
|
"error_code": ErrorCode.CUDA_OUT_OF_MEMORY, |
|
} |
|
except (ValueError, RuntimeError) as e: |
|
ret = { |
|
"text": f"{SERVER_ERROR_MSG}\n\n({e})", |
|
"error_code": ErrorCode.INTERNAL_ERROR, |
|
} |
|
return ret |
|
|
|
|
|
def create_model_worker(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--host", type=str, default="localhost") |
|
parser.add_argument("--port", type=int, default=21002) |
|
parser.add_argument("--worker-address", type=str, default="http://localhost:21002") |
|
parser.add_argument( |
|
"--controller-address", type=str, default="http://localhost:21001" |
|
) |
|
add_model_args(parser) |
|
parser.add_argument( |
|
"--model-names", |
|
type=lambda s: s.split(","), |
|
help="Optional display comma separated names", |
|
) |
|
parser.add_argument( |
|
"--conv-template", type=str, default=None, help="Conversation prompt template." |
|
) |
|
parser.add_argument("--embed-in-truncate", action="store_true") |
|
parser.add_argument( |
|
"--limit-worker-concurrency", |
|
type=int, |
|
default=5, |
|
help="Limit the model concurrency to prevent OOM.", |
|
) |
|
parser.add_argument("--stream-interval", type=int, default=2) |
|
parser.add_argument("--no-register", action="store_true") |
|
parser.add_argument( |
|
"--seed", |
|
type=int, |
|
default=None, |
|
help="Overwrite the random seed for each generation.", |
|
) |
|
parser.add_argument( |
|
"--debug", type=bool, default=False, help="Print debugging messages" |
|
) |
|
parser.add_argument( |
|
"--ssl", |
|
action="store_true", |
|
required=False, |
|
default=False, |
|
help="Enable SSL. Requires OS Environment variables 'SSL_KEYFILE' and 'SSL_CERTFILE'.", |
|
) |
|
args = parser.parse_args() |
|
logger.info(f"args: {args}") |
|
|
|
if args.gpus: |
|
if len(args.gpus.split(",")) < args.num_gpus: |
|
raise ValueError( |
|
f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!" |
|
) |
|
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus |
|
|
|
gptq_config = GptqConfig( |
|
ckpt=args.gptq_ckpt or args.model_path, |
|
wbits=args.gptq_wbits, |
|
groupsize=args.gptq_groupsize, |
|
act_order=args.gptq_act_order, |
|
) |
|
awq_config = AWQConfig( |
|
ckpt=args.awq_ckpt or args.model_path, |
|
wbits=args.awq_wbits, |
|
groupsize=args.awq_groupsize, |
|
) |
|
if args.enable_exllama: |
|
exllama_config = ExllamaConfig( |
|
max_seq_len=args.exllama_max_seq_len, |
|
gpu_split=args.exllama_gpu_split, |
|
cache_8bit=args.exllama_cache_8bit, |
|
) |
|
else: |
|
exllama_config = None |
|
if args.enable_xft: |
|
xft_config = XftConfig( |
|
max_seq_len=args.xft_max_seq_len, |
|
data_type=args.xft_dtype, |
|
) |
|
if args.device != "cpu": |
|
print("xFasterTransformer now is only support CPUs. Reset device to CPU") |
|
args.device = "cpu" |
|
else: |
|
xft_config = None |
|
|
|
worker = ModelWorker( |
|
args.controller_address, |
|
args.worker_address, |
|
worker_id, |
|
args.model_path, |
|
args.model_names, |
|
args.limit_worker_concurrency, |
|
revision=args.revision, |
|
no_register=args.no_register, |
|
device=args.device, |
|
num_gpus=args.num_gpus, |
|
max_gpu_memory=args.max_gpu_memory, |
|
dtype=str_to_torch_dtype(args.dtype), |
|
load_8bit=args.load_8bit, |
|
cpu_offloading=args.cpu_offloading, |
|
gptq_config=gptq_config, |
|
awq_config=awq_config, |
|
exllama_config=exllama_config, |
|
xft_config=xft_config, |
|
stream_interval=args.stream_interval, |
|
conv_template=args.conv_template, |
|
embed_in_truncate=args.embed_in_truncate, |
|
seed=args.seed, |
|
debug=args.debug, |
|
) |
|
return args, worker |
|
|
|
|
|
if __name__ == "__main__": |
|
args, worker = create_model_worker() |
|
if args.ssl: |
|
uvicorn.run( |
|
app, |
|
host=args.host, |
|
port=args.port, |
|
log_level="info", |
|
ssl_keyfile=os.environ["SSL_KEYFILE"], |
|
ssl_certfile=os.environ["SSL_CERTFILE"], |
|
) |
|
else: |
|
uvicorn.run(app, host=args.host, port=args.port, log_level="info") |
|
|