|
""" |
|
Use FastChat with Hugging Face generation APIs. |
|
|
|
Usage: |
|
python3 -m fastchat.serve.huggingface_api --model lmsys/vicuna-7b-v1.5 |
|
python3 -m fastchat.serve.huggingface_api --model lmsys/fastchat-t5-3b-v1.0 |
|
""" |
|
import argparse |
|
|
|
import torch |
|
|
|
from fastchat.model import load_model, get_conversation_template, add_model_args |
|
|
|
|
|
@torch.inference_mode() |
|
def main(args): |
|
|
|
model, tokenizer = load_model( |
|
args.model_path, |
|
device=args.device, |
|
num_gpus=args.num_gpus, |
|
max_gpu_memory=args.max_gpu_memory, |
|
load_8bit=args.load_8bit, |
|
cpu_offloading=args.cpu_offloading, |
|
revision=args.revision, |
|
debug=args.debug, |
|
) |
|
|
|
|
|
msg = args.message |
|
conv = get_conversation_template(args.model_path) |
|
conv.append_message(conv.roles[0], msg) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
|
|
inputs = tokenizer([prompt], return_tensors="pt").to(args.device) |
|
output_ids = model.generate( |
|
**inputs, |
|
do_sample=True if args.temperature > 1e-5 else False, |
|
temperature=args.temperature, |
|
repetition_penalty=args.repetition_penalty, |
|
max_new_tokens=args.max_new_tokens, |
|
) |
|
|
|
if model.config.is_encoder_decoder: |
|
output_ids = output_ids[0] |
|
else: |
|
output_ids = output_ids[0][len(inputs["input_ids"][0]) :] |
|
outputs = tokenizer.decode( |
|
output_ids, skip_special_tokens=True, spaces_between_special_tokens=False |
|
) |
|
|
|
|
|
print(f"{conv.roles[0]}: {msg}") |
|
print(f"{conv.roles[1]}: {outputs}") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
add_model_args(parser) |
|
parser.add_argument("--temperature", type=float, default=0.7) |
|
parser.add_argument("--repetition_penalty", type=float, default=1.0) |
|
parser.add_argument("--max-new-tokens", type=int, default=1024) |
|
parser.add_argument("--debug", action="store_true") |
|
parser.add_argument("--message", type=str, default="Hello! Who are you?") |
|
args = parser.parse_args() |
|
|
|
|
|
if "t5" in args.model_path and args.repetition_penalty == 1.0: |
|
args.repetition_penalty = 1.2 |
|
|
|
main(args) |
|
|