File size: 15,125 Bytes
6dc0c9c 2238fe2 6dc0c9c 2238fe2 6dc0c9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
"""
A model worker that executes the model.
"""
import argparse
import base64
import gc
import json
import os
from typing import List, Optional
import uuid
import torch
import torch.nn.functional as F
from transformers import set_seed
import uvicorn
from src.constants import ErrorCode, SERVER_ERROR_MSG
from src.model.model_adapter import (
load_model,
add_model_args,
get_generate_stream_function,
)
from src.modules.awq import AWQConfig
from src.modules.exllama import ExllamaConfig
from src.modules.xfastertransformer import XftConfig
from src.modules.gptq import GptqConfig
from src.serve.base_model_worker import BaseModelWorker, app
from src.utils import (
build_logger,
get_context_length,
str_to_torch_dtype,
)
worker_id = str(uuid.uuid4())[:8]
logger = build_logger("model_worker", f"model_worker_{worker_id}.log")
class ModelWorker(BaseModelWorker):
def __init__(
self,
controller_addr: str,
worker_addr: str,
worker_id: str,
model_path: str,
model_names: List[str],
limit_worker_concurrency: int,
no_register: bool,
device: str,
num_gpus: int,
max_gpu_memory: str,
revision: str = None,
dtype: Optional[torch.dtype] = None,
load_8bit: bool = False,
cpu_offloading: bool = False,
gptq_config: Optional[GptqConfig] = None,
awq_config: Optional[AWQConfig] = None,
exllama_config: Optional[ExllamaConfig] = None,
xft_config: Optional[XftConfig] = None,
stream_interval: int = 2,
conv_template: Optional[str] = None,
embed_in_truncate: bool = False,
seed: Optional[int] = None,
debug: bool = False,
**kwargs,
):
super().__init__(
controller_addr,
worker_addr,
worker_id,
model_path,
model_names,
limit_worker_concurrency,
conv_template=conv_template,
)
logger.info(f"Loading the model {self.model_names} on worker {worker_id} ...")
self.model, self.tokenizer = load_model(
model_path,
revision=revision,
device=device,
num_gpus=num_gpus,
max_gpu_memory=max_gpu_memory,
dtype=dtype,
load_8bit=load_8bit,
cpu_offloading=cpu_offloading,
gptq_config=gptq_config,
awq_config=awq_config,
exllama_config=exllama_config,
xft_config=xft_config,
debug=debug,
)
self.device = device
if self.tokenizer.pad_token == None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.context_len = get_context_length(self.model.config)
self.generate_stream_func = get_generate_stream_function(self.model, model_path)
self.stream_interval = stream_interval
self.embed_in_truncate = embed_in_truncate
self.seed = seed
if not no_register:
self.init_heart_beat()
def generate_stream_gate(self, params):
if self.device == "npu":
import torch_npu
torch_npu.npu.set_device("npu:0")
self.call_ct += 1
try:
if self.seed is not None:
set_seed(self.seed)
for output in self.generate_stream_func(
self.model,
self.tokenizer,
params,
self.device,
self.context_len,
self.stream_interval,
):
ret = {
"text": output["text"],
"error_code": 0,
}
if "usage" in output:
ret["usage"] = output["usage"]
if "finish_reason" in output:
ret["finish_reason"] = output["finish_reason"]
if "logprobs" in output:
ret["logprobs"] = output["logprobs"]
yield json.dumps(ret).encode() + b"\0"
except torch.cuda.OutOfMemoryError as e:
ret = {
"text": f"{SERVER_ERROR_MSG}\n\n({e})",
"error_code": ErrorCode.CUDA_OUT_OF_MEMORY,
}
yield json.dumps(ret).encode() + b"\0"
except (ValueError, RuntimeError) as e:
ret = {
"text": f"{SERVER_ERROR_MSG}\n\n({e})",
"error_code": ErrorCode.INTERNAL_ERROR,
}
yield json.dumps(ret).encode() + b"\0"
def generate_gate(self, params):
for x in self.generate_stream_gate(params):
pass
return json.loads(x[:-1].decode())
def __process_embed_chunk(self, input_ids, attention_mask, **model_type_dict):
if model_type_dict.get("is_bert"):
model_output = self.model(input_ids)
if model_type_dict.get("is_robert"):
data = model_output.last_hidden_state
else:
data = model_output[0]
elif model_type_dict.get("is_t5"):
model_output = self.model(input_ids, decoder_input_ids=input_ids)
data = model_output.encoder_last_hidden_state
else:
model_output = self.model(input_ids, output_hidden_states=True)
if model_type_dict.get("is_chatglm"):
data = model_output.hidden_states[-1].transpose(0, 1)
else:
data = model_output.hidden_states[-1]
if hasattr(self.model, "use_cls_pooling") and self.model.use_cls_pooling:
sum_embeddings = data[:, 0]
else:
mask = attention_mask.unsqueeze(-1).expand(data.size()).float()
masked_embeddings = data * mask
sum_embeddings = torch.sum(masked_embeddings, dim=1)
token_num = torch.sum(attention_mask).item()
return sum_embeddings, token_num
def __encode_base64(self, embeddings: torch.Tensor) -> List[str]:
embeddings = embeddings.cpu()
return [
base64.b64encode(e.numpy().tobytes()).decode("utf-8") for e in embeddings
]
@torch.inference_mode()
def get_embeddings(self, params):
self.call_ct += 1
try:
tokenizer = self.tokenizer
ret = {"embedding": [], "token_num": 0}
model_type_dict = {
"is_llama": "llama" in str(type(self.model)),
"is_t5": "t5" in str(type(self.model)),
"is_chatglm": "chatglm" in str(type(self.model)),
"is_bert": "bert" in str(type(self.model)),
"is_robert": "robert" in str(type(self.model)),
}
if self.embed_in_truncate:
encoding = tokenizer.batch_encode_plus(
params["input"],
padding=True,
truncation="longest_first",
return_tensors="pt",
max_length=self.context_len,
)
else:
encoding = tokenizer.batch_encode_plus(
params["input"], padding=True, return_tensors="pt"
)
input_ids = encoding["input_ids"].to(self.device)
attention_mask = input_ids != tokenizer.pad_token_id
base64_encode = params.get("encoding_format", None)
if self.embed_in_truncate:
embedding, token_num = self.__process_embed_chunk(
input_ids, attention_mask, **model_type_dict
)
if (
not hasattr(self.model, "use_cls_pooling")
or not self.model.use_cls_pooling
):
embedding = embedding / token_num
normalized_embeddings = F.normalize(embedding, p=2, dim=1)
ret["token_num"] = token_num
else:
all_embeddings = []
all_token_num = 0
for i in range(0, input_ids.size(1), self.context_len):
chunk_input_ids = input_ids[:, i : i + self.context_len]
chunk_attention_mask = attention_mask[:, i : i + self.context_len]
# add cls token and mask to get cls embedding
if (
hasattr(self.model, "use_cls_pooling")
and self.model.use_cls_pooling
):
cls_tokens = (
torch.zeros(
(chunk_input_ids.size(0), 1),
dtype=chunk_input_ids.dtype,
device=chunk_input_ids.device,
)
+ tokenizer.cls_token_id
)
chunk_input_ids = torch.cat(
[cls_tokens, chunk_input_ids], dim=-1
)
mask = torch.ones(
(chunk_attention_mask.size(0), 1),
dtype=chunk_attention_mask.dtype,
device=chunk_attention_mask.device,
)
chunk_attention_mask = torch.cat(
[mask, chunk_attention_mask], dim=-1
)
chunk_embeddings, token_num = self.__process_embed_chunk(
chunk_input_ids, chunk_attention_mask, **model_type_dict
)
if (
hasattr(self.model, "use_cls_pooling")
and self.model.use_cls_pooling
):
all_embeddings.append(chunk_embeddings * token_num)
else:
all_embeddings.append(chunk_embeddings)
all_token_num += token_num
all_embeddings_tensor = torch.stack(all_embeddings)
embedding = torch.sum(all_embeddings_tensor, dim=0) / all_token_num
normalized_embeddings = F.normalize(embedding, p=2, dim=1)
ret["token_num"] = all_token_num
if base64_encode == "base64":
out_embeddings = self.__encode_base64(normalized_embeddings)
else:
out_embeddings = normalized_embeddings.tolist()
ret["embedding"] = out_embeddings
gc.collect()
torch.cuda.empty_cache()
if self.device == "xpu":
torch.xpu.empty_cache()
if self.device == "npu":
torch.npu.empty_cache()
except torch.cuda.OutOfMemoryError as e:
ret = {
"text": f"{SERVER_ERROR_MSG}\n\n({e})",
"error_code": ErrorCode.CUDA_OUT_OF_MEMORY,
}
except (ValueError, RuntimeError) as e:
ret = {
"text": f"{SERVER_ERROR_MSG}\n\n({e})",
"error_code": ErrorCode.INTERNAL_ERROR,
}
return ret
def create_model_worker():
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=21002)
parser.add_argument("--worker-address", type=str, default="http://localhost:21002")
parser.add_argument(
"--controller-address", type=str, default="http://localhost:21001"
)
add_model_args(parser)
parser.add_argument(
"--model-names",
type=lambda s: s.split(","),
help="Optional display comma separated names",
)
parser.add_argument(
"--conv-template", type=str, default=None, help="Conversation prompt template."
)
parser.add_argument("--embed-in-truncate", action="store_true")
parser.add_argument(
"--limit-worker-concurrency",
type=int,
default=5,
help="Limit the model concurrency to prevent OOM.",
)
parser.add_argument("--stream-interval", type=int, default=2)
parser.add_argument("--no-register", action="store_true")
parser.add_argument(
"--seed",
type=int,
default=None,
help="Overwrite the random seed for each generation.",
)
parser.add_argument(
"--debug", type=bool, default=False, help="Print debugging messages"
)
parser.add_argument(
"--ssl",
action="store_true",
required=False,
default=False,
help="Enable SSL. Requires OS Environment variables 'SSL_KEYFILE' and 'SSL_CERTFILE'.",
)
args = parser.parse_args()
logger.info(f"args: {args}")
if args.gpus:
if len(args.gpus.split(",")) < args.num_gpus:
raise ValueError(
f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!"
)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
gptq_config = GptqConfig(
ckpt=args.gptq_ckpt or args.model_path,
wbits=args.gptq_wbits,
groupsize=args.gptq_groupsize,
act_order=args.gptq_act_order,
)
awq_config = AWQConfig(
ckpt=args.awq_ckpt or args.model_path,
wbits=args.awq_wbits,
groupsize=args.awq_groupsize,
)
if args.enable_exllama:
exllama_config = ExllamaConfig(
max_seq_len=args.exllama_max_seq_len,
gpu_split=args.exllama_gpu_split,
cache_8bit=args.exllama_cache_8bit,
)
else:
exllama_config = None
if args.enable_xft:
xft_config = XftConfig(
max_seq_len=args.xft_max_seq_len,
data_type=args.xft_dtype,
)
if args.device != "cpu":
print("xFasterTransformer now is only support CPUs. Reset device to CPU")
args.device = "cpu"
else:
xft_config = None
worker = ModelWorker(
args.controller_address,
args.worker_address,
worker_id,
args.model_path,
args.model_names,
args.limit_worker_concurrency,
revision=args.revision,
no_register=args.no_register,
device=args.device,
num_gpus=args.num_gpus,
max_gpu_memory=args.max_gpu_memory,
dtype=str_to_torch_dtype(args.dtype),
load_8bit=args.load_8bit,
cpu_offloading=args.cpu_offloading,
gptq_config=gptq_config,
awq_config=awq_config,
exllama_config=exllama_config,
xft_config=xft_config,
stream_interval=args.stream_interval,
conv_template=args.conv_template,
embed_in_truncate=args.embed_in_truncate,
seed=args.seed,
debug=args.debug,
)
return args, worker
if __name__ == "__main__":
args, worker = create_model_worker()
if args.ssl:
uvicorn.run(
app,
host=args.host,
port=args.port,
log_level="info",
ssl_keyfile=os.environ["SSL_KEYFILE"],
ssl_certfile=os.environ["SSL_CERTFILE"],
)
else:
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|