File size: 15,125 Bytes
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2238fe2
 
6dc0c9c
 
 
 
2238fe2
 
 
 
 
 
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
"""
A model worker that executes the model.
"""
import argparse
import base64
import gc
import json
import os
from typing import List, Optional
import uuid

import torch
import torch.nn.functional as F
from transformers import set_seed
import uvicorn

from src.constants import ErrorCode, SERVER_ERROR_MSG
from src.model.model_adapter import (
    load_model,
    add_model_args,
    get_generate_stream_function,
)
from src.modules.awq import AWQConfig
from src.modules.exllama import ExllamaConfig
from src.modules.xfastertransformer import XftConfig
from src.modules.gptq import GptqConfig
from src.serve.base_model_worker import BaseModelWorker, app
from src.utils import (
    build_logger,
    get_context_length,
    str_to_torch_dtype,
)

worker_id = str(uuid.uuid4())[:8]
logger = build_logger("model_worker", f"model_worker_{worker_id}.log")


class ModelWorker(BaseModelWorker):
    def __init__(
        self,
        controller_addr: str,
        worker_addr: str,
        worker_id: str,
        model_path: str,
        model_names: List[str],
        limit_worker_concurrency: int,
        no_register: bool,
        device: str,
        num_gpus: int,
        max_gpu_memory: str,
        revision: str = None,
        dtype: Optional[torch.dtype] = None,
        load_8bit: bool = False,
        cpu_offloading: bool = False,
        gptq_config: Optional[GptqConfig] = None,
        awq_config: Optional[AWQConfig] = None,
        exllama_config: Optional[ExllamaConfig] = None,
        xft_config: Optional[XftConfig] = None,
        stream_interval: int = 2,
        conv_template: Optional[str] = None,
        embed_in_truncate: bool = False,
        seed: Optional[int] = None,
        debug: bool = False,
        **kwargs,
    ):
        super().__init__(
            controller_addr,
            worker_addr,
            worker_id,
            model_path,
            model_names,
            limit_worker_concurrency,
            conv_template=conv_template,
        )

        logger.info(f"Loading the model {self.model_names} on worker {worker_id} ...")
        self.model, self.tokenizer = load_model(
            model_path,
            revision=revision,
            device=device,
            num_gpus=num_gpus,
            max_gpu_memory=max_gpu_memory,
            dtype=dtype,
            load_8bit=load_8bit,
            cpu_offloading=cpu_offloading,
            gptq_config=gptq_config,
            awq_config=awq_config,
            exllama_config=exllama_config,
            xft_config=xft_config,
            debug=debug,
        )
        self.device = device
        if self.tokenizer.pad_token == None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
        self.context_len = get_context_length(self.model.config)
        self.generate_stream_func = get_generate_stream_function(self.model, model_path)
        self.stream_interval = stream_interval
        self.embed_in_truncate = embed_in_truncate
        self.seed = seed

        if not no_register:
            self.init_heart_beat()

    def generate_stream_gate(self, params):
        if self.device == "npu":
            import torch_npu

            torch_npu.npu.set_device("npu:0")
        self.call_ct += 1

        try:
            if self.seed is not None:
                set_seed(self.seed)
            for output in self.generate_stream_func(
                self.model,
                self.tokenizer,
                params,
                self.device,
                self.context_len,
                self.stream_interval,
            ):
                ret = {
                    "text": output["text"],
                    "error_code": 0,
                }
                if "usage" in output:
                    ret["usage"] = output["usage"]
                if "finish_reason" in output:
                    ret["finish_reason"] = output["finish_reason"]
                if "logprobs" in output:
                    ret["logprobs"] = output["logprobs"]
                yield json.dumps(ret).encode() + b"\0"
        except torch.cuda.OutOfMemoryError as e:
            ret = {
                "text": f"{SERVER_ERROR_MSG}\n\n({e})",
                "error_code": ErrorCode.CUDA_OUT_OF_MEMORY,
            }
            yield json.dumps(ret).encode() + b"\0"
        except (ValueError, RuntimeError) as e:
            ret = {
                "text": f"{SERVER_ERROR_MSG}\n\n({e})",
                "error_code": ErrorCode.INTERNAL_ERROR,
            }
            yield json.dumps(ret).encode() + b"\0"

    def generate_gate(self, params):
        for x in self.generate_stream_gate(params):
            pass
        return json.loads(x[:-1].decode())

    def __process_embed_chunk(self, input_ids, attention_mask, **model_type_dict):
        if model_type_dict.get("is_bert"):
            model_output = self.model(input_ids)
            if model_type_dict.get("is_robert"):
                data = model_output.last_hidden_state
            else:
                data = model_output[0]
        elif model_type_dict.get("is_t5"):
            model_output = self.model(input_ids, decoder_input_ids=input_ids)
            data = model_output.encoder_last_hidden_state
        else:
            model_output = self.model(input_ids, output_hidden_states=True)
            if model_type_dict.get("is_chatglm"):
                data = model_output.hidden_states[-1].transpose(0, 1)
            else:
                data = model_output.hidden_states[-1]

        if hasattr(self.model, "use_cls_pooling") and self.model.use_cls_pooling:
            sum_embeddings = data[:, 0]
        else:
            mask = attention_mask.unsqueeze(-1).expand(data.size()).float()
            masked_embeddings = data * mask
            sum_embeddings = torch.sum(masked_embeddings, dim=1)
        token_num = torch.sum(attention_mask).item()

        return sum_embeddings, token_num

    def __encode_base64(self, embeddings: torch.Tensor) -> List[str]:
        embeddings = embeddings.cpu()
        return [
            base64.b64encode(e.numpy().tobytes()).decode("utf-8") for e in embeddings
        ]

    @torch.inference_mode()
    def get_embeddings(self, params):
        self.call_ct += 1

        try:
            tokenizer = self.tokenizer
            ret = {"embedding": [], "token_num": 0}

            model_type_dict = {
                "is_llama": "llama" in str(type(self.model)),
                "is_t5": "t5" in str(type(self.model)),
                "is_chatglm": "chatglm" in str(type(self.model)),
                "is_bert": "bert" in str(type(self.model)),
                "is_robert": "robert" in str(type(self.model)),
            }

            if self.embed_in_truncate:
                encoding = tokenizer.batch_encode_plus(
                    params["input"],
                    padding=True,
                    truncation="longest_first",
                    return_tensors="pt",
                    max_length=self.context_len,
                )
            else:
                encoding = tokenizer.batch_encode_plus(
                    params["input"], padding=True, return_tensors="pt"
                )
            input_ids = encoding["input_ids"].to(self.device)
            attention_mask = input_ids != tokenizer.pad_token_id

            base64_encode = params.get("encoding_format", None)

            if self.embed_in_truncate:
                embedding, token_num = self.__process_embed_chunk(
                    input_ids, attention_mask, **model_type_dict
                )
                if (
                    not hasattr(self.model, "use_cls_pooling")
                    or not self.model.use_cls_pooling
                ):
                    embedding = embedding / token_num
                normalized_embeddings = F.normalize(embedding, p=2, dim=1)
                ret["token_num"] = token_num
            else:
                all_embeddings = []
                all_token_num = 0
                for i in range(0, input_ids.size(1), self.context_len):
                    chunk_input_ids = input_ids[:, i : i + self.context_len]
                    chunk_attention_mask = attention_mask[:, i : i + self.context_len]

                    # add cls token and mask to get cls embedding
                    if (
                        hasattr(self.model, "use_cls_pooling")
                        and self.model.use_cls_pooling
                    ):
                        cls_tokens = (
                            torch.zeros(
                                (chunk_input_ids.size(0), 1),
                                dtype=chunk_input_ids.dtype,
                                device=chunk_input_ids.device,
                            )
                            + tokenizer.cls_token_id
                        )
                        chunk_input_ids = torch.cat(
                            [cls_tokens, chunk_input_ids], dim=-1
                        )
                        mask = torch.ones(
                            (chunk_attention_mask.size(0), 1),
                            dtype=chunk_attention_mask.dtype,
                            device=chunk_attention_mask.device,
                        )
                        chunk_attention_mask = torch.cat(
                            [mask, chunk_attention_mask], dim=-1
                        )

                    chunk_embeddings, token_num = self.__process_embed_chunk(
                        chunk_input_ids, chunk_attention_mask, **model_type_dict
                    )
                    if (
                        hasattr(self.model, "use_cls_pooling")
                        and self.model.use_cls_pooling
                    ):
                        all_embeddings.append(chunk_embeddings * token_num)
                    else:
                        all_embeddings.append(chunk_embeddings)
                    all_token_num += token_num

                all_embeddings_tensor = torch.stack(all_embeddings)
                embedding = torch.sum(all_embeddings_tensor, dim=0) / all_token_num
                normalized_embeddings = F.normalize(embedding, p=2, dim=1)

                ret["token_num"] = all_token_num

            if base64_encode == "base64":
                out_embeddings = self.__encode_base64(normalized_embeddings)
            else:
                out_embeddings = normalized_embeddings.tolist()
            ret["embedding"] = out_embeddings

            gc.collect()
            torch.cuda.empty_cache()
            if self.device == "xpu":
                torch.xpu.empty_cache()
            if self.device == "npu":
                torch.npu.empty_cache()
        except torch.cuda.OutOfMemoryError as e:
            ret = {
                "text": f"{SERVER_ERROR_MSG}\n\n({e})",
                "error_code": ErrorCode.CUDA_OUT_OF_MEMORY,
            }
        except (ValueError, RuntimeError) as e:
            ret = {
                "text": f"{SERVER_ERROR_MSG}\n\n({e})",
                "error_code": ErrorCode.INTERNAL_ERROR,
            }
        return ret


def create_model_worker():
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", type=str, default="localhost")
    parser.add_argument("--port", type=int, default=21002)
    parser.add_argument("--worker-address", type=str, default="http://localhost:21002")
    parser.add_argument(
        "--controller-address", type=str, default="http://localhost:21001"
    )
    add_model_args(parser)
    parser.add_argument(
        "--model-names",
        type=lambda s: s.split(","),
        help="Optional display comma separated names",
    )
    parser.add_argument(
        "--conv-template", type=str, default=None, help="Conversation prompt template."
    )
    parser.add_argument("--embed-in-truncate", action="store_true")
    parser.add_argument(
        "--limit-worker-concurrency",
        type=int,
        default=5,
        help="Limit the model concurrency to prevent OOM.",
    )
    parser.add_argument("--stream-interval", type=int, default=2)
    parser.add_argument("--no-register", action="store_true")
    parser.add_argument(
        "--seed",
        type=int,
        default=None,
        help="Overwrite the random seed for each generation.",
    )
    parser.add_argument(
        "--debug", type=bool, default=False, help="Print debugging messages"
    )
    parser.add_argument(
        "--ssl",
        action="store_true",
        required=False,
        default=False,
        help="Enable SSL. Requires OS Environment variables 'SSL_KEYFILE' and 'SSL_CERTFILE'.",
    )
    args = parser.parse_args()
    logger.info(f"args: {args}")

    if args.gpus:
        if len(args.gpus.split(",")) < args.num_gpus:
            raise ValueError(
                f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!"
            )
        os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus

    gptq_config = GptqConfig(
        ckpt=args.gptq_ckpt or args.model_path,
        wbits=args.gptq_wbits,
        groupsize=args.gptq_groupsize,
        act_order=args.gptq_act_order,
    )
    awq_config = AWQConfig(
        ckpt=args.awq_ckpt or args.model_path,
        wbits=args.awq_wbits,
        groupsize=args.awq_groupsize,
    )
    if args.enable_exllama:
        exllama_config = ExllamaConfig(
            max_seq_len=args.exllama_max_seq_len,
            gpu_split=args.exllama_gpu_split,
            cache_8bit=args.exllama_cache_8bit,
        )
    else:
        exllama_config = None
    if args.enable_xft:
        xft_config = XftConfig(
            max_seq_len=args.xft_max_seq_len,
            data_type=args.xft_dtype,
        )
        if args.device != "cpu":
            print("xFasterTransformer now is only support CPUs. Reset device to CPU")
            args.device = "cpu"
    else:
        xft_config = None

    worker = ModelWorker(
        args.controller_address,
        args.worker_address,
        worker_id,
        args.model_path,
        args.model_names,
        args.limit_worker_concurrency,
        revision=args.revision,
        no_register=args.no_register,
        device=args.device,
        num_gpus=args.num_gpus,
        max_gpu_memory=args.max_gpu_memory,
        dtype=str_to_torch_dtype(args.dtype),
        load_8bit=args.load_8bit,
        cpu_offloading=args.cpu_offloading,
        gptq_config=gptq_config,
        awq_config=awq_config,
        exllama_config=exllama_config,
        xft_config=xft_config,
        stream_interval=args.stream_interval,
        conv_template=args.conv_template,
        embed_in_truncate=args.embed_in_truncate,
        seed=args.seed,
        debug=args.debug,
    )
    return args, worker


if __name__ == "__main__":
    args, worker = create_model_worker()
    if args.ssl:
        uvicorn.run(
            app,
            host=args.host,
            port=args.port,
            log_level="info",
            ssl_keyfile=os.environ["SSL_KEYFILE"],
            ssl_certfile=os.environ["SSL_CERTFILE"],
        )
    else:
        uvicorn.run(app, host=args.host, port=args.port, log_level="info")