Spaces:
Runtime error
Runtime error
import gradio as gr | |
import spaces | |
import torch | |
from clip_slider_pipeline import CLIPSliderXL | |
from diffusers import StableDiffusionXLPipeline, ControlNetModel, StableDiffusionXLControlNetPipeline, EulerDiscreteScheduler, AutoencoderKL | |
import time | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
from ledits.pipeline_leditspp_stable_diffusion_xl import LEditsPPPipelineStableDiffusionXL | |
def HWC3(x): | |
assert x.dtype == np.uint8 | |
if x.ndim == 2: | |
x = x[:, :, None] | |
assert x.ndim == 3 | |
H, W, C = x.shape | |
assert C == 1 or C == 3 or C == 4 | |
if C == 3: | |
return x | |
if C == 1: | |
return np.concatenate([x, x, x], axis=2) | |
if C == 4: | |
color = x[:, :, 0:3].astype(np.float32) | |
alpha = x[:, :, 3:4].astype(np.float32) / 255.0 | |
y = color * alpha + 255.0 * (1.0 - alpha) | |
y = y.clip(0, 255).astype(np.uint8) | |
return y | |
def process_controlnet_img(image): | |
controlnet_img = np.array(image) | |
controlnet_img = cv2.Canny(controlnet_img, 100, 200) | |
controlnet_img = HWC3(controlnet_img) | |
controlnet_img = Image.fromarray(controlnet_img) | |
# load pipelines | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", vae=vae).to("cuda", torch.float16) | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
clip_slider = CLIPSliderXL(pipe, device=torch.device("cuda")) | |
pipe_adapter = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda", torch.float16) | |
pipe_adapter.scheduler = EulerDiscreteScheduler.from_config(pipe_adapter.scheduler.config) | |
#pipe_adapter.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") | |
# scale = 0.8 | |
# pipe_adapter.set_ip_adapter_scale(scale) | |
clip_slider_ip = CLIPSliderXL(sd_pipe=pipe_adapter, device=torch.device("cuda")) | |
controlnet = ControlNetModel.from_pretrained( | |
"xinsir/controlnet-canny-sdxl-1.0", # insert here your choice of controlnet | |
torch_dtype=torch.float16 | |
) | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe_controlnet = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"sd-community/sdxl-flash", | |
controlnet=controlnet, | |
vae=vae, | |
torch_dtype=torch.float16, | |
) | |
clip_slider_controlnet = CLIPSliderXL(sd_pipe=pipe_controlnet,device=torch.device("cuda")) | |
pipe_inv = LEditsPPPipelineStableDiffusionXL.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", vae=vae, | |
torch_dtype=torch.float16 | |
) | |
clip_slider_inv = CLIPSliderXL(sd_pipe=pipe_inv,device=torch.device("cuda")) | |
def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, | |
x_concept_1, x_concept_2, y_concept_1, y_concept_2, | |
avg_diff_x_1, avg_diff_x_2, | |
avg_diff_y_1, avg_diff_y_2, | |
img2img_type = None, img = None, | |
controlnet_scale= None, ip_adapter_scale=None, | |
edit_threshold=None, edit_guidance_scale = None, | |
init_latents=None, zs=None): | |
start_time = time.time() | |
# check if avg diff for directions need to be re-calculated | |
print("slider_x", slider_x) | |
print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2) | |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]): | |
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations) | |
avg_diff_0 = avg_diff[0].to(torch.float16) | |
avg_diff_1 = avg_diff[1].to(torch.float16) | |
x_concept_1, x_concept_2 = slider_x[0], slider_x[1] | |
print("avg_diff_0", avg_diff_0.dtype) | |
if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]): | |
avg_diff_2nd = clip_slider.find_latent_direction(slider_y[0], slider_y[1], num_iterations=iterations) | |
avg_diff_2nd_0 = avg_diff_2nd[0].to(torch.float16) | |
avg_diff_2nd_1 = avg_diff_2nd[1].to(torch.float16) | |
y_concept_1, y_concept_2 = slider_y[0], slider_y[1] | |
end_time = time.time() | |
print(f"direction time: {end_time - start_time:.2f} ms") | |
start_time = time.time() | |
if img2img_type=="controlnet canny" and img is not None: | |
control_img = process_controlnet_img(img) | |
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1)) | |
elif img2img_type=="ip adapter" and img is not None: | |
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1)) | |
elif img2img_type=="inversion": | |
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1), init_latents = init_latents, zs=zs, edit_threshold=edit_threshold, edit_guidance_scale = edit_guidance_scale) | |
else: # text to image | |
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1)) | |
end_time = time.time() | |
print(f"generation time: {end_time - start_time:.2f} ms") | |
comma_concepts_x = ', '.join(slider_x) | |
comma_concepts_y = ', '.join(slider_y) | |
avg_diff_x_1 = avg_diff_0.cpu() | |
avg_diff_x_2 = avg_diff_1.cpu() | |
avg_diff_y_1 = avg_diff_2nd_0.cpu() | |
avg_diff_y_2 = avg_diff_2nd_1.cpu() | |
return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, image | |
def update_scales(x,y,prompt,seed, steps, guidance_scale, | |
avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, | |
img2img_type = None, img = None, | |
controlnet_scale= None, ip_adapter_scale=None, | |
edit_threshold=None, edit_guidance_scale = None, | |
init_latents=None, zs=None): | |
avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda()) | |
avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda()) | |
if img2img_type=="controlnet canny" and img is not None: | |
control_img = process_controlnet_img(img) | |
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) | |
elif img2img_type=="ip adapter" and img is not None: | |
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) | |
elif img2img_type=="inversion": | |
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1), edit_threshold=edit_threshold, edit_guidance_scale = edit_guidance_scale, init_latents = init_latents, zs=zs) | |
else: | |
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) | |
return image | |
def update_x(x,y,prompt,seed, steps, | |
avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, | |
img2img_type = None, | |
img = None): | |
avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda()) | |
avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda()) | |
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) | |
return image | |
def update_y(x,y,prompt, seed, steps, | |
avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, | |
img2img_type = None, | |
img = None): | |
avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda()) | |
avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda()) | |
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) | |
return image | |
def invert(image, num_inversion_steps=50, skip=0.3): | |
_ = clip_slider_inv.pipe.invert( | |
source_prompt = "", | |
image = image, | |
num_inversion_steps = num_inversion_steps, | |
skip = skip | |
) | |
return clip_slider_inv.pipe.init_latents, lip_slider_inv.pipe.zs | |
def reset_do_inversion(): | |
return True | |
css = ''' | |
#group { | |
position: relative; | |
width: 420px; | |
height: 420px; | |
margin-bottom: 20px; | |
background-color: white | |
} | |
#x { | |
position: absolute; | |
bottom: 0; | |
left: 25px; | |
width: 400px; | |
} | |
#y { | |
position: absolute; | |
bottom: 20px; | |
left: 67px; | |
width: 400px; | |
transform: rotate(-90deg); | |
transform-origin: left bottom; | |
} | |
#image_out{position:absolute; width: 80%; right: 10px; top: 40px} | |
''' | |
with gr.Blocks(css=css) as demo: | |
x_concept_1 = gr.State("") | |
x_concept_2 = gr.State("") | |
y_concept_1 = gr.State("") | |
y_concept_2 = gr.State("") | |
avg_diff_x_1 = gr.State() | |
avg_diff_x_2 = gr.State() | |
avg_diff_y_1 = gr.State() | |
avg_diff_y_2 = gr.State() | |
do_inversion = gr.State() | |
init_latents = gr.State() | |
zs = gr.State() | |
with gr.Tab("text2image"): | |
with gr.Row(): | |
with gr.Column(): | |
slider_x = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) | |
slider_y = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) | |
prompt = gr.Textbox(label="Prompt") | |
submit = gr.Button("find directions") | |
with gr.Column(): | |
with gr.Group(elem_id="group"): | |
x = gr.Slider(minimum=-7, value=0, maximum=7, elem_id="x", interactive=False) | |
y = gr.Slider(minimum=-7, value=0, maximum=7, elem_id="y", interactive=False) | |
output_image = gr.Image(elem_id="image_out") | |
with gr.Row(): | |
generate_butt = gr.Button("generate") | |
with gr.Accordion(label="advanced options", open=False): | |
iterations = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=400) | |
steps = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30) | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.1, | |
maximum=10.0, | |
step=0.1, | |
value=5, | |
) | |
seed = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True) | |
with gr.Tab(label="image2image"): | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512)) | |
slider_x_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) | |
slider_y_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) | |
img2img_type = gr.Radio(["controlnet canny", "ip adapter"], label="", info="") | |
prompt_a = gr.Textbox(label="Prompt") | |
submit_a = gr.Button("Submit") | |
with gr.Column(): | |
with gr.Group(elem_id="group"): | |
x_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False) | |
y_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False) | |
output_image_a = gr.Image(elem_id="image_out") | |
with gr.Row(): | |
generate_butt_a = gr.Button("generate") | |
with gr.Accordion(label="advanced options", open=False): | |
iterations_a = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=300) | |
steps_a = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30) | |
guidance_scale_a = gr.Slider( | |
label="Guidance scale", | |
minimum=0.1, | |
maximum=10.0, | |
step=0.1, | |
value=5, | |
) | |
controlnet_conditioning_scale = gr.Slider( | |
label="controlnet conditioning scale", | |
minimum=0.5, | |
maximum=5.0, | |
step=0.1, | |
value=0.7, | |
) | |
ip_adapter_scale = gr.Slider( | |
label="ip adapter scale", | |
minimum=0.5, | |
maximum=5.0, | |
step=0.1, | |
value=0.8, | |
) | |
seed_a = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True) | |
with gr.Tab(label="inversion"): | |
with gr.Row(): | |
with gr.Column(): | |
image_inv = gr.Image(height=512, width=512) | |
slider_x_inv = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) | |
slider_y_inv = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) | |
prompt_inv = gr.Textbox(label="Prompt") | |
img2img_type_inv = gr.Radio(["inversion"], label="",value="inversion", info="", visible=False) | |
submit_inv = gr.Button("Submit") | |
with gr.Column(): | |
with gr.Group(elem_id="group"): | |
x_inv = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False) | |
y_inv = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False) | |
output_image_inv = gr.Image(elem_id="image_out") | |
with gr.Row(): | |
generate_butt_inv = gr.Button("generate") | |
with gr.Accordion(label="advanced options", open=False): | |
iterations_inv = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=300) | |
steps_inv = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30) | |
guidance_scale_inv = gr.Slider( | |
label="Guidance scale", | |
minimum=0.1, | |
maximum=10.0, | |
step=0.1, | |
value=5, | |
) | |
# edit_threshold=None, edit_guidance_scale = None, | |
# init_latents=None, zs=None | |
edit_threshold = gr.Slider( | |
label="edit threshold", | |
minimum=0.01, | |
maximum=0.99, | |
step=0.1, | |
value=0.3, | |
) | |
edit_guidance_scale = gr.Slider( | |
label="edit guidance scale", | |
minimum=0, | |
maximum=20, | |
step=0.25, | |
value=5, | |
) | |
seed_inv = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True) | |
submit.click(fn=generate, | |
inputs=[slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], | |
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image]) | |
image_inv.change(fn=reset_do_inversion, outputs=[do_inversion]).then(fn=invert, inputs=[image_inv], outputs=[init_latents,zs]) | |
submit_inv.click(fn=generate, | |
inputs=[slider_x_inv, slider_y_inv, prompt_inv, seed_inv, iterations_inv, steps_inv, guidance_scale_inv, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type_inv, image, controlnet_conditioning_scale, ip_adapter_scale ,edit_threshold, edit_guidance_scale, init_latents, zs], | |
outputs=[x_inv, y_inv, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image_inv]) | |
generate_butt.click(fn=update_scales, inputs=[x,y, prompt, seed, steps, guidance_scale, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image]) | |
generate_butt_a.click(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, guidance_scale_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a]) | |
generate_butt_inv.click(fn=update_scales, inputs=[x_inv,y_inv, prompt_inv, seed_inv, steps_inv, guidance_scale_inv, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type_inv, image, controlnet_conditioning_scale, ip_adapter_scale ,edit_threshold, edit_guidance_scale, init_latents, zs], outputs=[output_image_inv]) | |
#x.change(fn=update_scales, inputs=[x,y, prompt, seed, steps, guidance_scale, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image]) | |
#y.change(fn=update_scales, inputs=[x,y, prompt, seed, steps, guidance_scale, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image]) | |
submit_a.click(fn=generate, | |
inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, guidance_scale_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], | |
outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image_a]) | |
#x_a.change(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, guidance_scale_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a]) | |
#y_a.change(fn=update_scales, inputs=[x_a,y_a, prompt, seed_a, steps_a, guidance_scale_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a]) | |
if __name__ == "__main__": | |
demo.launch() |