File size: 92,000 Bytes
376b097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e92a1c6
 
 
376b097
e92a1c6
376b097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e92a1c6
 
376b097
 
 
 
 
 
 
 
e92a1c6
 
 
 
 
 
 
376b097
 
 
 
 
 
e92a1c6
 
376b097
e92a1c6
 
 
 
376b097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9efa518
 
 
 
376b097
 
 
 
 
 
 
 
9efa518
 
 
 
 
 
 
376b097
 
 
 
 
 
9efa518
 
 
 
 
 
 
376b097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e92a1c6
 
 
376b097
e92a1c6
 
85c4d8a
 
376b097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85c4d8a
 
376b097
85c4d8a
376b097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e92a1c6
376b097
 
e92a1c6
376b097
 
 
 
 
 
85c4d8a
376b097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85c4d8a
 
376b097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
import math
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
from transformers import (
    CLIPImageProcessor,
    CLIPTextModel,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionModelWithProjection,
)

from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import (
    FromSingleFileMixin,
    IPAdapterMixin,
    StableDiffusionXLLoraLoaderMixin,
    TextualInversionLoaderMixin,
)
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import (
    Attention,
    AttnProcessor,
    AttnProcessor2_0,
    XFormersAttnProcessor,
)
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.schedulers import DDIMScheduler, DPMSolverMultistepScheduler
from diffusers.utils import (
    USE_PEFT_BACKEND,
    is_invisible_watermark_available,
    is_torch_xla_available,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from .pipeline_output import LEditsPPDiffusionPipelineOutput, LEditsPPInversionPipelineOutput


if is_invisible_watermark_available():
    from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker

if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> import PIL
        >>> import requests
        >>> from io import BytesIO

        >>> from diffusers import LEditsPPPipelineStableDiffusionXL

        >>> pipe = LEditsPPPipelineStableDiffusionXL.from_pretrained(
        ...     "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
        ... )
        >>> pipe = pipe.to("cuda")


        >>> def download_image(url):
        ...     response = requests.get(url)
        ...     return PIL.Image.open(BytesIO(response.content)).convert("RGB")


        >>> img_url = "https://www.aiml.informatik.tu-darmstadt.de/people/mbrack/tennis.jpg"
        >>> image = download_image(img_url)

        >>> _ = pipe.invert(image=image, num_inversion_steps=50, skip=0.2)

        >>> edited_image = pipe(
        ...     editing_prompt=["tennis ball", "tomato"],
        ...     reverse_editing_direction=[True, False],
        ...     edit_guidance_scale=[5.0, 10.0],
        ...     edit_threshold=[0.9, 0.85],
        ... ).images[0]
        ```
"""


# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LeditsAttentionStore
class LeditsAttentionStore:
    @staticmethod
    def get_empty_store():
        return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []}

    def __call__(self, attn, is_cross: bool, place_in_unet: str, editing_prompts, PnP=False):
        # attn.shape = batch_size * head_size, seq_len query, seq_len_key
        if attn.shape[1] <= self.max_size:
            bs = 1 + int(PnP) + editing_prompts
            skip = 2 if PnP else 1  # skip PnP & unconditional
            attn = torch.stack(attn.split(self.batch_size)).permute(1, 0, 2, 3)
            source_batch_size = int(attn.shape[1] // bs)
            self.forward(attn[:, skip * source_batch_size :], is_cross, place_in_unet)

    def forward(self, attn, is_cross: bool, place_in_unet: str):
        key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"

        self.step_store[key].append(attn)

    def between_steps(self, store_step=True):
        if store_step:
            if self.average:
                if len(self.attention_store) == 0:
                    self.attention_store = self.step_store
                else:
                    for key in self.attention_store:
                        for i in range(len(self.attention_store[key])):
                            self.attention_store[key][i] += self.step_store[key][i]
            else:
                if len(self.attention_store) == 0:
                    self.attention_store = [self.step_store]
                else:
                    self.attention_store.append(self.step_store)

            self.cur_step += 1
        self.step_store = self.get_empty_store()

    def get_attention(self, step: int):
        if self.average:
            attention = {
                key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store
            }
        else:
            assert step is not None
            attention = self.attention_store[step]
        return attention

    def aggregate_attention(
        self, attention_maps, prompts, res: Union[int, Tuple[int]], from_where: List[str], is_cross: bool, select: int
    ):
        out = [[] for x in range(self.batch_size)]
        if isinstance(res, int):
            num_pixels = res**2
            resolution = (res, res)
        else:
            num_pixels = res[0] * res[1]
            resolution = res[:2]

        for location in from_where:
            for bs_item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
                for batch, item in enumerate(bs_item):
                    if item.shape[1] == num_pixels:
                        cross_maps = item.reshape(len(prompts), -1, *resolution, item.shape[-1])[select]
                        out[batch].append(cross_maps)

        out = torch.stack([torch.cat(x, dim=0) for x in out])
        # average over heads
        out = out.sum(1) / out.shape[1]
        return out

    def __init__(self, average: bool, batch_size=1, max_resolution=16, max_size: int = None):
        self.step_store = self.get_empty_store()
        self.attention_store = []
        self.cur_step = 0
        self.average = average
        self.batch_size = batch_size
        if max_size is None:
            self.max_size = max_resolution**2
        elif max_size is not None and max_resolution is None:
            self.max_size = max_size
        else:
            raise ValueError("Only allowed to set one of max_resolution or max_size")


# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LeditsGaussianSmoothing
class LeditsGaussianSmoothing:
    def __init__(self, device):
        kernel_size = [3, 3]
        sigma = [0.5, 0.5]

        # The gaussian kernel is the product of the gaussian function of each dimension.
        kernel = 1
        meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size])
        for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
            mean = (size - 1) / 2
            kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2))

        # Make sure sum of values in gaussian kernel equals 1.
        kernel = kernel / torch.sum(kernel)

        # Reshape to depthwise convolutional weight
        kernel = kernel.view(1, 1, *kernel.size())
        kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1))

        self.weight = kernel.to(device)

    def __call__(self, input):
        """
        Arguments:
        Apply gaussian filter to input.
            input (torch.Tensor): Input to apply gaussian filter on.
        Returns:
            filtered (torch.Tensor): Filtered output.
        """
        return F.conv2d(input, weight=self.weight.to(input.dtype))


# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEDITSCrossAttnProcessor
class LEDITSCrossAttnProcessor:
    def __init__(self, attention_store, place_in_unet, pnp, editing_prompts):
        self.attnstore = attention_store
        self.place_in_unet = place_in_unet
        self.editing_prompts = editing_prompts
        self.pnp = pnp

    def __call__(
        self,
        attn: Attention,
        hidden_states,
        encoder_hidden_states,
        attention_mask=None,
        temb=None,
    ):
        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        self.attnstore(
            attention_probs,
            is_cross=True,
            place_in_unet=self.place_in_unet,
            editing_prompts=self.editing_prompts,
            PnP=self.pnp,
        )

        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        hidden_states = hidden_states / attn.rescale_output_factor
        return hidden_states


class LEditsPPPipelineStableDiffusionXL(
    DiffusionPipeline,
    FromSingleFileMixin,
    StableDiffusionXLLoraLoaderMixin,
    TextualInversionLoaderMixin,
    IPAdapterMixin,
):
    """
    Pipeline for textual image editing using LEDits++ with Stable Diffusion XL.

    This model inherits from [`DiffusionPipeline`] and builds on the [`StableDiffusionXLPipeline`]. Check the
    superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a
    particular device, etc.).

    In addition the pipeline inherits the following loading methods:
        - *LoRA*: [`LEditsPPPipelineStableDiffusionXL.load_lora_weights`]
        - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]

    as well as the following saving methods:
        - *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`]

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion XL uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        text_encoder_2 ([`~transformers.CLIPTextModelWithProjection`]):
            Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
            specifically the
            [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
            variant.
        tokenizer ([`~transformers.CLIPTokenizer`]):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        tokenizer_2 ([`~transformers.CLIPTokenizer`]):
            Second Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
            [`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]. If any other scheduler is passed it will
            automatically be set to [`DPMSolverMultistepScheduler`].
        force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
            Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
            `stabilityai/stable-diffusion-xl-base-1-0`.
        add_watermarker (`bool`, *optional*):
            Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
            watermark output images. If not defined, it will default to True if the package is installed, otherwise no
            watermarker will be used.
    """

    model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
    _optional_components = [
        "tokenizer",
        "tokenizer_2",
        "text_encoder",
        "text_encoder_2",
        "image_encoder",
        "feature_extractor",
    ]
    _callback_tensor_inputs = [
        "latents",
        "prompt_embeds",
        "negative_prompt_embeds",
        "add_text_embeds",
        "add_time_ids",
        "negative_pooled_prompt_embeds",
        "negative_add_time_ids",
    ]

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        text_encoder_2: CLIPTextModelWithProjection,
        tokenizer: CLIPTokenizer,
        tokenizer_2: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: Union[DPMSolverMultistepScheduler, DDIMScheduler],
        image_encoder: CLIPVisionModelWithProjection = None,
        feature_extractor: CLIPImageProcessor = None,
        force_zeros_for_empty_prompt: bool = True,
        add_watermarker: Optional[bool] = None,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            text_encoder_2=text_encoder_2,
            tokenizer=tokenizer,
            tokenizer_2=tokenizer_2,
            unet=unet,
            scheduler=scheduler,
            image_encoder=image_encoder,
            feature_extractor=feature_extractor,
        )
        self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)

        if not isinstance(scheduler, DDIMScheduler) and not isinstance(scheduler, DPMSolverMultistepScheduler):
            self.scheduler = DPMSolverMultistepScheduler.from_config(
                scheduler.config, algorithm_type="sde-dpmsolver++", solver_order=2
            )
            logger.warning(
                "This pipeline only supports DDIMScheduler and DPMSolverMultistepScheduler. "
                "The scheduler has been changed to DPMSolverMultistepScheduler."
            )

        self.default_sample_size = self.unet.config.sample_size

        add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()

        if add_watermarker:
            self.watermark = StableDiffusionXLWatermarker()
        else:
            self.watermark = None
        self.inversion_steps = None

    def encode_prompt(
        self,
        device: Optional[torch.device] = None,
        num_images_per_prompt: int = 1,
        negative_prompt: Optional[str] = None,
        negative_prompt_2: Optional[str] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
        lora_scale: Optional[float] = None,
        clip_skip: Optional[int] = None,
        enable_edit_guidance: bool = True,
        editing_prompt: Optional[str] = None,
        editing_prompt_embeds: Optional[torch.Tensor] = None,
        editing_pooled_prompt_embeds: Optional[torch.Tensor] = None,
        avg_diff=None, # [0] -> text encoder  1,[1] ->text encoder  2
        avg_diff_2nd=None,  # text encoder  1,2
        correlation_weight_factor=0.7,
        scale=2,
        scale_2nd=2,
    ) -> object:
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead.
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            lora_scale (`float`, *optional*):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            enable_edit_guidance (`bool`):
                Whether to guide towards an editing prompt or not.
            editing_prompt (`str` or `List[str]`, *optional*):
                Editing prompt(s) to be encoded. If not defined and 'enable_edit_guidance' is True, one has to pass
                `editing_prompt_embeds` instead.
            editing_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided and 'enable_edit_guidance' is True, editing_prompt_embeds will be generated from
                `editing_prompt` input argument.
            editing_pooled_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated edit pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled editing_pooled_prompt_embeds will be generated from `editing_prompt`
                input argument.
        """
        device = device or self._execution_device

        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if self.text_encoder is not None:
                if not USE_PEFT_BACKEND:
                    adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
                else:
                    scale_lora_layers(self.text_encoder, lora_scale)

            if self.text_encoder_2 is not None:
                if not USE_PEFT_BACKEND:
                    adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
                else:
                    scale_lora_layers(self.text_encoder_2, lora_scale)

        batch_size = self.batch_size

        # Define tokenizers and text encoders
        tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
        text_encoders = (
            [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
        )
        num_edit_tokens = 0

        # get unconditional embeddings for classifier free guidance
        zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt

        if negative_prompt_embeds is None:
            negative_prompt = negative_prompt or ""
            negative_prompt_2 = negative_prompt_2 or negative_prompt

            # normalize str to list
            negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
            negative_prompt_2 = (
                batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
            )

            uncond_tokens: List[str]

            if batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but image inversion "
                    f" has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of the input images."
                )
            else:
                uncond_tokens = [negative_prompt, negative_prompt_2]

            j=0
            negative_prompt_embeds_list = []
            for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
                if isinstance(self, TextualInversionLoaderMixin):
                    negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
                
                
                uncond_input = tokenizer(
                    negative_prompt,
                    padding="max_length",
                    max_length=tokenizer.model_max_length,
                    truncation=True,
                    return_tensors="pt",
                )
                toks = uncond_input.input_ids

                negative_prompt_embeds = text_encoder(
                    uncond_input.input_ids.to(device),
                    output_hidden_states=True,
                )
                # We are only ALWAYS interested in the pooled output of the final text encoder
                negative_pooled_prompt_embeds = negative_prompt_embeds[0]
                negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
                
                if avg_diff is not None:
                    # scale=3
                    normed_prompt_embeds = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1, keepdim=True)
                    sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T
                    if j == 0:
                        weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768)

                        standard_weights = torch.ones_like(weights)

                        weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
                        edit_concepts_embeds = negative_prompt_embeds + (
                                    weights * avg_diff[0][None, :].repeat(1, tokenizer.model_max_length, 1) * scale)

                        if avg_diff_2nd is not None:
                            edit_concepts_embeds += (weights * avg_diff_2nd[0][None, :].repeat(1,
                                                                                            self.pipe.tokenizer.model_max_length,
                                                                                            1) * scale_2nd)
                    else:
                        weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 1280)

                        standard_weights = torch.ones_like(weights)

                        weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
                        edit_concepts_embeds = negative_prompt_embeds + (
                                    weights * avg_diff[1][None, :].repeat(1, tokenizer.model_max_length, 1) * scale)

                        if avg_diff_2nd is not None:
                            edit_concepts_embeds += (weights * avg_diff_2nd[1][None, :].repeat(1,
                                                                                        self.pipe.tokenizer_2.model_max_length,
                                                                                        1) * scale_2nd)

                negative_prompt_embeds_list.append(negative_prompt_embeds)
                j+=1

            negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)

            if zero_out_negative_prompt:
                negative_prompt_embeds = torch.zeros_like(negative_prompt_embeds)
                negative_pooled_prompt_embeds = torch.zeros_like(negative_pooled_prompt_embeds)

        if enable_edit_guidance and editing_prompt_embeds is None:
            editing_prompt_2 = editing_prompt

            editing_prompts = [editing_prompt, editing_prompt_2]
            edit_prompt_embeds_list = []

            i = 0
            for editing_prompt, tokenizer, text_encoder in zip(editing_prompts, tokenizers, text_encoders):
                if isinstance(self, TextualInversionLoaderMixin):
                    editing_prompt = self.maybe_convert_prompt(editing_prompt, tokenizer)

                max_length = negative_prompt_embeds.shape[1]
                edit_concepts_input = tokenizer(
                    # [x for item in editing_prompt for x in repeat(item, batch_size)],
                    editing_prompt,
                    padding="max_length",
                    max_length=max_length,
                    truncation=True,
                    return_tensors="pt",
                    return_length=True,
                )
                num_edit_tokens = edit_concepts_input.length - 2
                toks = edit_concepts_input.input_ids
                edit_concepts_embeds = text_encoder(
                    edit_concepts_input.input_ids.to(device),
                    output_hidden_states=True,
                )
                # We are only ALWAYS interested in the pooled output of the final text encoder
                editing_pooled_prompt_embeds = edit_concepts_embeds[0]
                if clip_skip is None:
                    edit_concepts_embeds = edit_concepts_embeds.hidden_states[-2]
                else:
                    # "2" because SDXL always indexes from the penultimate layer.
                    edit_concepts_embeds = edit_concepts_embeds.hidden_states[-(clip_skip + 2)]


                if avg_diff is not None:

                    normed_prompt_embeds = edit_concepts_embeds / edit_concepts_embeds.norm(dim=-1, keepdim=True)
                    sims = normed_prompt_embeds[0] @ normed_prompt_embeds[0].T
                    if i == 0:
                        weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 768)

                        standard_weights = torch.ones_like(weights)

                        weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
                        edit_concepts_embeds = edit_concepts_embeds + (
                                    weights * avg_diff[0][None, :].repeat(1, tokenizer.model_max_length, 1) * scale)

                        if avg_diff_2nd is not None:
                            edit_concepts_embeds += (weights * avg_diff_2nd[0][None, :].repeat(1,
                                                                                            self.pipe.tokenizer.model_max_length,
                                                                                            1) * scale_2nd)
                    else:
                        weights = sims[toks.argmax(), :][None, :, None].repeat(1, 1, 1280)

                        standard_weights = torch.ones_like(weights)

                        weights = standard_weights + (weights - standard_weights) * correlation_weight_factor
                        edit_concepts_embeds = edit_concepts_embeds + (
                                    weights * avg_diff[1][None, :].repeat(1, tokenizer.model_max_length, 1) * scale)
                        if avg_diff_2nd is not None:
                            edit_concepts_embeds += (weights * avg_diff_2nd[1][None, :].repeat(1,
                                                                                            self.pipe.tokenizer_2.model_max_length,
                                                                                            1) * scale_2nd)


                edit_prompt_embeds_list.append(edit_concepts_embeds)
                i+=1

            edit_concepts_embeds = torch.concat(edit_prompt_embeds_list, dim=-1)
        elif not enable_edit_guidance:
            edit_concepts_embeds = None
            editing_pooled_prompt_embeds = None

        negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
        bs_embed, seq_len, _ = negative_prompt_embeds.shape
        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        seq_len = negative_prompt_embeds.shape[1]
        negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
        negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        if enable_edit_guidance:
            bs_embed_edit, seq_len, _ = edit_concepts_embeds.shape
            edit_concepts_embeds = edit_concepts_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
            edit_concepts_embeds = edit_concepts_embeds.repeat(1, num_images_per_prompt, 1)
            edit_concepts_embeds = edit_concepts_embeds.view(bs_embed_edit * num_images_per_prompt, seq_len, -1)

        negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
            bs_embed * num_images_per_prompt, -1
        )

        if enable_edit_guidance:
            editing_pooled_prompt_embeds = editing_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
                bs_embed_edit * num_images_per_prompt, -1
            )

        if self.text_encoder is not None:
            if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        if self.text_encoder_2 is not None:
            if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder_2, lora_scale)

        return (
            negative_prompt_embeds,
            edit_concepts_embeds,
            negative_pooled_prompt_embeds,
            editing_pooled_prompt_embeds,
            num_edit_tokens,
        )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, eta, generator=None):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (Ξ·) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to Ξ· in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        negative_prompt=None,
        negative_prompt_2=None,
        negative_prompt_embeds=None,
        negative_pooled_prompt_embeds=None,
    ):
        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )
        elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
            raise ValueError(
                "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
            )

    # Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(self, device, latents):
        latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    def _get_add_time_ids(
        self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
    ):
        add_time_ids = list(original_size + crops_coords_top_left + target_size)

        passed_add_embed_dim = (
            self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
        )
        expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features

        if expected_add_embed_dim != passed_add_embed_dim:
            raise ValueError(
                f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
            )

        add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
        return add_time_ids

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
    def upcast_vae(self):
        dtype = self.vae.dtype
        self.vae.to(dtype=torch.float32)
        use_torch_2_0_or_xformers = isinstance(
            self.vae.decoder.mid_block.attentions[0].processor,
            (
                AttnProcessor2_0,
                XFormersAttnProcessor,
            ),
        )
        # if xformers or torch_2_0 is used attention block does not need
        # to be in float32 which can save lots of memory
        if use_torch_2_0_or_xformers:
            self.vae.post_quant_conv.to(dtype)
            self.vae.decoder.conv_in.to(dtype)
            self.vae.decoder.mid_block.to(dtype)

    # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
    def get_guidance_scale_embedding(
        self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
    ) -> torch.Tensor:
        """
        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298

        Args:
            w (`torch.Tensor`):
                Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
            embedding_dim (`int`, *optional*, defaults to 512):
                Dimension of the embeddings to generate.
            dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
                Data type of the generated embeddings.

        Returns:
            `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
        """
        assert len(w.shape) == 1
        w = w * 1000.0

        half_dim = embedding_dim // 2
        emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
        emb = w.to(dtype)[:, None] * emb[None, :]
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
        if embedding_dim % 2 == 1:  # zero pad
            emb = torch.nn.functional.pad(emb, (0, 1))
        assert emb.shape == (w.shape[0], embedding_dim)
        return emb

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def guidance_rescale(self):
        return self._guidance_rescale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def denoising_end(self):
        return self._denoising_end

    @property
    def num_timesteps(self):
        return self._num_timesteps

    # Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEditsPPPipelineStableDiffusion.prepare_unet
    def prepare_unet(self, attention_store, PnP: bool = False):
        attn_procs = {}
        for name in self.unet.attn_processors.keys():
            if name.startswith("mid_block"):
                place_in_unet = "mid"
            elif name.startswith("up_blocks"):
                place_in_unet = "up"
            elif name.startswith("down_blocks"):
                place_in_unet = "down"
            else:
                continue

            if "attn2" in name and place_in_unet != "mid":
                attn_procs[name] = LEDITSCrossAttnProcessor(
                    attention_store=attention_store,
                    place_in_unet=place_in_unet,
                    pnp=PnP,
                    editing_prompts=self.enabled_editing_prompts,
                )
            else:
                attn_procs[name] = AttnProcessor()

        self.unet.set_attn_processor(attn_procs)

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        denoising_end: Optional[float] = None,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
        ip_adapter_image: Optional[PipelineImageInput] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Optional[Tuple[int, int]] = None,
        editing_prompt: Optional[Union[str, List[str]]] = None,
        editing_prompt_embeddings: Optional[torch.Tensor] = None,
        editing_pooled_prompt_embeds: Optional[torch.Tensor] = None,
        reverse_editing_direction: Optional[Union[bool, List[bool]]] = False,
        edit_guidance_scale: Optional[Union[float, List[float]]] = 5,
        edit_warmup_steps: Optional[Union[int, List[int]]] = 0,
        edit_cooldown_steps: Optional[Union[int, List[int]]] = None,
        edit_threshold: Optional[Union[float, List[float]]] = 0.9,
        sem_guidance: Optional[List[torch.Tensor]] = None,
        use_cross_attn_mask: bool = False,
        use_intersect_mask: bool = False,
        user_mask: Optional[torch.Tensor] = None,
        attn_store_steps: Optional[List[int]] = [],
        store_averaged_over_steps: bool = True,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        avg_diff=None, # [0] -> text encoder  1,[1] ->text encoder  2
        avg_diff_2nd=None,  # text encoder  1,2
        correlation_weight_factor=0.7,
        scale=2,
        scale_2nd=2,
        correlation_weight_factor = 0.7,
        init_latents: [torch.Tensor] = None,
        zs: [torch.Tensor] = None,
        **kwargs,
    ):
        r"""
        The call function to the pipeline for editing. The
        [`~pipelines.ledits_pp.LEditsPPPipelineStableDiffusionXL.invert`] method has to be called beforehand. Edits
        will always be performed for the last inverted image(s).

        Args:
            denoising_end (`float`, *optional*):
                When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
                completed before it is intentionally prematurely terminated. As a result, the returned sample will
                still retain a substantial amount of noise as determined by the discrete timesteps selected by the
                scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
                "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            ip_adapter_image: (`PipelineImageInput`, *optional*):
                Optional image input to work with IP Adapters.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
                of a plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            guidance_rescale (`float`, *optional*, defaults to 0.7):
                Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
                Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `Ο†` in equation 16. of
                [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
                Guidance rescale factor should fix overexposure when using zero terminal SNR.
            crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
                `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
                `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
                `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
                For most cases, `target_size` should be set to the desired height and width of the generated image. If
                not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
                section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            editing_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. The image is reconstructed by setting
                `editing_prompt = None`. Guidance direction of prompt should be specified via
                `reverse_editing_direction`.
            editing_prompt_embeddings (`torch.Tensor`, *optional*):
                Pre-generated edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, editing_prompt_embeddings will be generated from `editing_prompt` input argument.
            editing_pooled_prompt_embeddings (`torch.Tensor`, *optional*):
                Pre-generated pooled edit text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, editing_prompt_embeddings will be generated from `editing_prompt` input
                argument.
            reverse_editing_direction (`bool` or `List[bool]`, *optional*, defaults to `False`):
                Whether the corresponding prompt in `editing_prompt` should be increased or decreased.
            edit_guidance_scale (`float` or `List[float]`, *optional*, defaults to 5):
                Guidance scale for guiding the image generation. If provided as list values should correspond to
                `editing_prompt`. `edit_guidance_scale` is defined as `s_e` of equation 12 of [LEDITS++
                Paper](https://arxiv.org/abs/2301.12247).
            edit_warmup_steps (`float` or `List[float]`, *optional*, defaults to 10):
                Number of diffusion steps (for each prompt) for which guidance is not applied.
            edit_cooldown_steps (`float` or `List[float]`, *optional*, defaults to `None`):
                Number of diffusion steps (for each prompt) after which guidance is no longer applied.
            edit_threshold (`float` or `List[float]`, *optional*, defaults to 0.9):
                Masking threshold of guidance. Threshold should be proportional to the image region that is modified.
                'edit_threshold' is defined as 'Ξ»' of equation 12 of [LEDITS++
                Paper](https://arxiv.org/abs/2301.12247).
            sem_guidance (`List[torch.Tensor]`, *optional*):
                List of pre-generated guidance vectors to be applied at generation. Length of the list has to
                correspond to `num_inference_steps`.
            use_cross_attn_mask:
                Whether cross-attention masks are used. Cross-attention masks are always used when use_intersect_mask
                is set to true. Cross-attention masks are defined as 'M^1' of equation 12 of [LEDITS++
                paper](https://arxiv.org/pdf/2311.16711.pdf).
            use_intersect_mask:
                Whether the masking term is calculated as intersection of cross-attention masks and masks derived from
                the noise estimate. Cross-attention mask are defined as 'M^1' and masks derived from the noise estimate
                are defined as 'M^2' of equation 12 of [LEDITS++ paper](https://arxiv.org/pdf/2311.16711.pdf).
            user_mask:
                User-provided mask for even better control over the editing process. This is helpful when LEDITS++'s
                implicit masks do not meet user preferences.
            attn_store_steps:
                Steps for which the attention maps are stored in the AttentionStore. Just for visualization purposes.
            store_averaged_over_steps:
                Whether the attention maps for the 'attn_store_steps' are stored averaged over the diffusion steps. If
                False, attention maps for each step are stores separately. Just for visualization purposes.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.

        Examples:

        Returns:
            [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When
            returning a tuple, the first element is a list with the generated images.
        """
        if self.inversion_steps is None:
            raise ValueError(
                "You need to invert an input image first before calling the pipeline. The `invert` method has to be called beforehand. Edits will always be performed for the last inverted image(s)."
            )

        eta = self.eta
        num_images_per_prompt = 1
        #latents = self.init_latents
        latents = init_latents

        #zs = self.zs
        self.scheduler.set_timesteps(len(self.scheduler.timesteps))

        if use_intersect_mask:
            use_cross_attn_mask = True

        if use_cross_attn_mask:
            self.smoothing = LeditsGaussianSmoothing(self.device)

        if user_mask is not None:
            user_mask = user_mask.to(self.device)

        # TODO: Check inputs
        # 1. Check inputs. Raise error if not correct
        # self.check_inputs(
        #    callback_steps,
        #    negative_prompt,
        #    negative_prompt_2,
        #    prompt_embeds,
        #    negative_prompt_embeds,
        #    pooled_prompt_embeds,
        #    negative_pooled_prompt_embeds,
        # )
        self._guidance_rescale = guidance_rescale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs
        self._denoising_end = denoising_end

        # 2. Define call parameters
        batch_size = self.batch_size

        device = self._execution_device

        if editing_prompt:
            enable_edit_guidance = True
            if isinstance(editing_prompt, str):
                editing_prompt = [editing_prompt]
            self.enabled_editing_prompts = len(editing_prompt)
        elif editing_prompt_embeddings is not None:
            enable_edit_guidance = True
            self.enabled_editing_prompts = editing_prompt_embeddings.shape[0]
        else:
            self.enabled_editing_prompts = 0
            enable_edit_guidance = False
        print("negative_prompt", negative_prompt)
        # 3. Encode input prompt
        text_encoder_lora_scale = (
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        )
        (
            prompt_embeds,
            edit_prompt_embeds,
            negative_pooled_prompt_embeds,
            pooled_edit_embeds,
            num_edit_tokens,
        ) = self.encode_prompt(
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            negative_prompt_embeds=negative_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
            clip_skip=self.clip_skip,
            enable_edit_guidance=enable_edit_guidance,
            editing_prompt=editing_prompt,
            editing_prompt_embeds=editing_prompt_embeddings,
            editing_pooled_prompt_embeds=editing_pooled_prompt_embeds,
            avg_diff = avg_diff,
            avg_diff_2nd = avg_diff_2nd,
            correlation_weight_factor = correlation_weight_factor,
            scale=scale,
            scale_2nd=scale_2nd
        )

        # 4. Prepare timesteps
        # self.scheduler.set_timesteps(num_inference_steps, device=device)

        timesteps = self.inversion_steps
        timesteps = inversion_steps
        t_to_idx = {int(v): k for k, v in enumerate(timesteps)}

        if use_cross_attn_mask:
            self.attention_store = LeditsAttentionStore(
                average=store_averaged_over_steps,
                batch_size=batch_size,
                max_size=(latents.shape[-2] / 4.0) * (latents.shape[-1] / 4.0),
                max_resolution=None,
            )
            self.prepare_unet(self.attention_store)
            resolution = latents.shape[-2:]
            att_res = (int(resolution[0] / 4), int(resolution[1] / 4))

        # 5. Prepare latent variables
        latents = self.prepare_latents(device=device, latents=latents)

        # 6. Prepare extra step kwargs.
        extra_step_kwargs = self.prepare_extra_step_kwargs(eta)

        if self.text_encoder_2 is None:
            text_encoder_projection_dim = int(negative_pooled_prompt_embeds.shape[-1])
        else:
            text_encoder_projection_dim = self.text_encoder_2.config.projection_dim

        # 7. Prepare added time ids & embeddings
        add_text_embeds = negative_pooled_prompt_embeds
        add_time_ids = self._get_add_time_ids(
            self.size,
            crops_coords_top_left,
            self.size,
            dtype=negative_pooled_prompt_embeds.dtype,
            text_encoder_projection_dim=text_encoder_projection_dim,
        )

        if enable_edit_guidance:
            prompt_embeds = torch.cat([prompt_embeds, edit_prompt_embeds], dim=0)
            add_text_embeds = torch.cat([add_text_embeds, pooled_edit_embeds], dim=0)
            edit_concepts_time_ids = add_time_ids.repeat(edit_prompt_embeds.shape[0], 1)
            add_time_ids = torch.cat([add_time_ids, edit_concepts_time_ids], dim=0)
            self.text_cross_attention_maps = [editing_prompt] if isinstance(editing_prompt, str) else editing_prompt

        prompt_embeds = prompt_embeds.to(device)
        add_text_embeds = add_text_embeds.to(device)
        add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)

        if ip_adapter_image is not None:
            # TODO: fix image encoding
            image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image, device, num_images_per_prompt)
            if self.do_classifier_free_guidance:
                image_embeds = torch.cat([negative_image_embeds, image_embeds])
                image_embeds = image_embeds.to(device)

        # 8. Denoising loop
        self.sem_guidance = None
        self.activation_mask = None

        if (
            self.denoising_end is not None
            and isinstance(self.denoising_end, float)
            and self.denoising_end > 0
            and self.denoising_end < 1
        ):
            discrete_timestep_cutoff = int(
                round(
                    self.scheduler.config.num_train_timesteps
                    - (self.denoising_end * self.scheduler.config.num_train_timesteps)
                )
            )
            num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
            timesteps = timesteps[:num_inference_steps]

        # 9. Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)

        self._num_timesteps = len(timesteps)
        with self.progress_bar(total=self._num_timesteps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * (1 + self.enabled_editing_prompts))
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
                # predict the noise residual
                added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
                if ip_adapter_image is not None:
                    added_cond_kwargs["image_embeds"] = image_embeds
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                )[0]

                noise_pred_out = noise_pred.chunk(1 + self.enabled_editing_prompts)  # [b,4, 64, 64]
                noise_pred_uncond = noise_pred_out[0]
                noise_pred_edit_concepts = noise_pred_out[1:]

                noise_guidance_edit = torch.zeros(
                    noise_pred_uncond.shape,
                    device=self.device,
                    dtype=noise_pred_uncond.dtype,
                )

                if sem_guidance is not None and len(sem_guidance) > i:
                    noise_guidance_edit += sem_guidance[i].to(self.device)

                elif enable_edit_guidance:
                    if self.activation_mask is None:
                        self.activation_mask = torch.zeros(
                            (len(timesteps), self.enabled_editing_prompts, *noise_pred_edit_concepts[0].shape)
                        )
                    if self.sem_guidance is None:
                        self.sem_guidance = torch.zeros((len(timesteps), *noise_pred_uncond.shape))

                    # noise_guidance_edit = torch.zeros_like(noise_guidance)
                    for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts):
                        if isinstance(edit_warmup_steps, list):
                            edit_warmup_steps_c = edit_warmup_steps[c]
                        else:
                            edit_warmup_steps_c = edit_warmup_steps
                        if i < edit_warmup_steps_c:
                            continue

                        if isinstance(edit_guidance_scale, list):
                            edit_guidance_scale_c = edit_guidance_scale[c]
                        else:
                            edit_guidance_scale_c = edit_guidance_scale

                        if isinstance(edit_threshold, list):
                            edit_threshold_c = edit_threshold[c]
                        else:
                            edit_threshold_c = edit_threshold
                        if isinstance(reverse_editing_direction, list):
                            reverse_editing_direction_c = reverse_editing_direction[c]
                        else:
                            reverse_editing_direction_c = reverse_editing_direction

                        if isinstance(edit_cooldown_steps, list):
                            edit_cooldown_steps_c = edit_cooldown_steps[c]
                        elif edit_cooldown_steps is None:
                            edit_cooldown_steps_c = i + 1
                        else:
                            edit_cooldown_steps_c = edit_cooldown_steps

                        if i >= edit_cooldown_steps_c:
                            continue

                        noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond

                        if reverse_editing_direction_c:
                            noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1

                        noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c

                        if user_mask is not None:
                            noise_guidance_edit_tmp = noise_guidance_edit_tmp * user_mask

                        if use_cross_attn_mask:
                            out = self.attention_store.aggregate_attention(
                                attention_maps=self.attention_store.step_store,
                                prompts=self.text_cross_attention_maps,
                                res=att_res,
                                from_where=["up", "down"],
                                is_cross=True,
                                select=self.text_cross_attention_maps.index(editing_prompt[c]),
                            )
                            attn_map = out[:, :, :, 1 : 1 + num_edit_tokens[c]]  # 0 -> startoftext

                            # average over all tokens
                            if attn_map.shape[3] != num_edit_tokens[c]:
                                raise ValueError(
                                    f"Incorrect shape of attention_map. Expected size {num_edit_tokens[c]}, but found {attn_map.shape[3]}!"
                                )
                            attn_map = torch.sum(attn_map, dim=3)

                            # gaussian_smoothing
                            attn_map = F.pad(attn_map.unsqueeze(1), (1, 1, 1, 1), mode="reflect")
                            attn_map = self.smoothing(attn_map).squeeze(1)

                            # torch.quantile function expects float32
                            if attn_map.dtype == torch.float32:
                                tmp = torch.quantile(attn_map.flatten(start_dim=1), edit_threshold_c, dim=1)
                            else:
                                tmp = torch.quantile(
                                    attn_map.flatten(start_dim=1).to(torch.float32), edit_threshold_c, dim=1
                                ).to(attn_map.dtype)
                            attn_mask = torch.where(
                                attn_map >= tmp.unsqueeze(1).unsqueeze(1).repeat(1, *att_res), 1.0, 0.0
                            )

                            # resolution must match latent space dimension
                            attn_mask = F.interpolate(
                                attn_mask.unsqueeze(1),
                                noise_guidance_edit_tmp.shape[-2:],  # 64,64
                            ).repeat(1, 4, 1, 1)
                            self.activation_mask[i, c] = attn_mask.detach().cpu()
                            if not use_intersect_mask:
                                noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask

                        if use_intersect_mask:
                            noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
                            noise_guidance_edit_tmp_quantile = torch.sum(
                                noise_guidance_edit_tmp_quantile, dim=1, keepdim=True
                            )
                            noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(
                                1, self.unet.config.in_channels, 1, 1
                            )

                            # torch.quantile function expects float32
                            if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
                                tmp = torch.quantile(
                                    noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
                                    edit_threshold_c,
                                    dim=2,
                                    keepdim=False,
                                )
                            else:
                                tmp = torch.quantile(
                                    noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
                                    edit_threshold_c,
                                    dim=2,
                                    keepdim=False,
                                ).to(noise_guidance_edit_tmp_quantile.dtype)

                            intersect_mask = (
                                torch.where(
                                    noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
                                    torch.ones_like(noise_guidance_edit_tmp),
                                    torch.zeros_like(noise_guidance_edit_tmp),
                                )
                                * attn_mask
                            )

                            self.activation_mask[i, c] = intersect_mask.detach().cpu()

                            noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask

                        elif not use_cross_attn_mask:
                            # calculate quantile
                            noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
                            noise_guidance_edit_tmp_quantile = torch.sum(
                                noise_guidance_edit_tmp_quantile, dim=1, keepdim=True
                            )
                            noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1)

                            # torch.quantile function expects float32
                            if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
                                tmp = torch.quantile(
                                    noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
                                    edit_threshold_c,
                                    dim=2,
                                    keepdim=False,
                                )
                            else:
                                tmp = torch.quantile(
                                    noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
                                    edit_threshold_c,
                                    dim=2,
                                    keepdim=False,
                                ).to(noise_guidance_edit_tmp_quantile.dtype)

                            self.activation_mask[i, c] = (
                                torch.where(
                                    noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
                                    torch.ones_like(noise_guidance_edit_tmp),
                                    torch.zeros_like(noise_guidance_edit_tmp),
                                )
                                .detach()
                                .cpu()
                            )

                            noise_guidance_edit_tmp = torch.where(
                                noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
                                noise_guidance_edit_tmp,
                                torch.zeros_like(noise_guidance_edit_tmp),
                            )

                        noise_guidance_edit += noise_guidance_edit_tmp

                    self.sem_guidance[i] = noise_guidance_edit.detach().cpu()

                noise_pred = noise_pred_uncond + noise_guidance_edit

                # compute the previous noisy sample x_t -> x_t-1
                if enable_edit_guidance and self.guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(
                        noise_pred,
                        noise_pred_edit_concepts.mean(dim=0, keepdim=False),
                        guidance_rescale=self.guidance_rescale,
                    )

                idx = t_to_idx[int(t)]
                latents = self.scheduler.step(
                    noise_pred, t, latents, variance_noise=zs[idx], **extra_step_kwargs, return_dict=False
                )[0]

                # step callback
                if use_cross_attn_mask:
                    store_step = i in attn_store_steps
                    self.attention_store.between_steps(store_step)

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
                    add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
                    negative_pooled_prompt_embeds = callback_outputs.pop(
                        "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
                    )
                    add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
                    # negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > 0 and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

                if XLA_AVAILABLE:
                    xm.mark_step()

        if not output_type == "latent":
            # make sure the VAE is in float32 mode, as it overflows in float16
            needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast

            if needs_upcasting:
                self.upcast_vae()
                latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)

            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]

            # cast back to fp16 if needed
            if needs_upcasting:
                self.vae.to(dtype=torch.float16)
        else:
            image = latents

        if not output_type == "latent":
            # apply watermark if available
            if self.watermark is not None:
                image = self.watermark.apply_watermark(image)

            image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return LEditsPPDiffusionPipelineOutput(images=image, nsfw_content_detected=None)

    @torch.no_grad()
    # Modified from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.LEditsPPPipelineStableDiffusion.encode_image
    def encode_image(self, image, dtype=None, height=None, width=None, resize_mode="default", crops_coords=None):
        image = self.image_processor.preprocess(
            image=image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
        )
        resized = self.image_processor.postprocess(image=image, output_type="pil")

        if max(image.shape[-2:]) > self.vae.config["sample_size"] * 1.5:
            logger.warning(
                "Your input images far exceed the default resolution of the underlying diffusion model. "
                "The output images may contain severe artifacts! "
                "Consider down-sampling the input using the `height` and `width` parameters"
            )
        image = image.to(self.device, dtype=dtype)
        needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast

        if needs_upcasting:
            image = image.float()
            self.upcast_vae()

        x0 = self.vae.encode(image).latent_dist.mode()
        x0 = x0.to(dtype)
        # cast back to fp16 if needed
        if needs_upcasting:
            self.vae.to(dtype=torch.float16)

        x0 = self.vae.config.scaling_factor * x0
        return x0, resized

    @torch.no_grad()
    def invert(
        self,
        image: PipelineImageInput,
        source_prompt: str = "",
        source_guidance_scale=3.5,
        negative_prompt: str = None,
        negative_prompt_2: str = None,
        num_inversion_steps: int = 50,
        skip: float = 0.15,
        generator: Optional[torch.Generator] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        num_zero_noise_steps: int = 3,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
    ):
        r"""
        The function to the pipeline for image inversion as described by the [LEDITS++
        Paper](https://arxiv.org/abs/2301.12247). If the scheduler is set to [`~schedulers.DDIMScheduler`] the
        inversion proposed by [edit-friendly DPDM](https://arxiv.org/abs/2304.06140) will be performed instead.

        Args:
            image (`PipelineImageInput`):
                Input for the image(s) that are to be edited. Multiple input images have to default to the same aspect
                ratio.
            source_prompt (`str`, defaults to `""`):
                Prompt describing the input image that will be used for guidance during inversion. Guidance is disabled
                if the `source_prompt` is `""`.
            source_guidance_scale (`float`, defaults to `3.5`):
                Strength of guidance during inversion.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
            num_inversion_steps (`int`, defaults to `50`):
                Number of total performed inversion steps after discarding the initial `skip` steps.
            skip (`float`, defaults to `0.15`):
                Portion of initial steps that will be ignored for inversion and subsequent generation. Lower values
                will lead to stronger changes to the input image. `skip` has to be between `0` and `1`.
            generator (`torch.Generator`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make inversion
                deterministic.
            crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
                `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
                `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
                `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
                [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
            num_zero_noise_steps (`int`, defaults to `3`):
                Number of final diffusion steps that will not renoise the current image. If no steps are set to zero
                SD-XL in combination with [`DPMSolverMultistepScheduler`] will produce noise artifacts.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).

        Returns:
            [`~pipelines.ledits_pp.LEditsPPInversionPipelineOutput`]: Output will contain the resized input image(s)
            and respective VAE reconstruction(s).
        """

        # Reset attn processor, we do not want to store attn maps during inversion
        self.unet.set_attn_processor(AttnProcessor())

        self.eta = 1.0

        self.scheduler.config.timestep_spacing = "leading"
        self.scheduler.set_timesteps(int(num_inversion_steps * (1 + skip)))
        self.inversion_steps = self.scheduler.timesteps[-num_inversion_steps:]
        timesteps = self.inversion_steps

        num_images_per_prompt = 1

        device = self._execution_device

        # 0. Ensure that only uncond embedding is used if prompt = ""
        if source_prompt == "":
            # noise pred should only be noise_pred_uncond
            source_guidance_scale = 0.0
            do_classifier_free_guidance = False
        else:
            do_classifier_free_guidance = source_guidance_scale > 1.0

        # 1. prepare image
        x0, resized = self.encode_image(image, dtype=self.text_encoder_2.dtype)
        width = x0.shape[2] * self.vae_scale_factor
        height = x0.shape[3] * self.vae_scale_factor
        self.size = (height, width)

        self.batch_size = x0.shape[0]

        # 2. get embeddings
        text_encoder_lora_scale = (
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        )

        if isinstance(source_prompt, str):
            source_prompt = [source_prompt] * self.batch_size

        (
            negative_prompt_embeds,
            prompt_embeds,
            negative_pooled_prompt_embeds,
            edit_pooled_prompt_embeds,
            _,
        ) = self.encode_prompt(
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            editing_prompt=source_prompt,
            lora_scale=text_encoder_lora_scale,
            enable_edit_guidance=do_classifier_free_guidance,
        )
        if self.text_encoder_2 is None:
            text_encoder_projection_dim = int(negative_pooled_prompt_embeds.shape[-1])
        else:
            text_encoder_projection_dim = self.text_encoder_2.config.projection_dim

        # 3. Prepare added time ids & embeddings
        add_text_embeds = negative_pooled_prompt_embeds
        add_time_ids = self._get_add_time_ids(
            self.size,
            crops_coords_top_left,
            self.size,
            dtype=negative_prompt_embeds.dtype,
            text_encoder_projection_dim=text_encoder_projection_dim,
        )

        if do_classifier_free_guidance:
            negative_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            add_text_embeds = torch.cat([add_text_embeds, edit_pooled_prompt_embeds], dim=0)
            add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)

        negative_prompt_embeds = negative_prompt_embeds.to(device)

        add_text_embeds = add_text_embeds.to(device)
        add_time_ids = add_time_ids.to(device).repeat(self.batch_size * num_images_per_prompt, 1)

        # autoencoder reconstruction
        if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
            self.upcast_vae()
            x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
            image_rec = self.vae.decode(
                x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator
            )[0]
        elif self.vae.config.force_upcast:
            x0_tmp = x0.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
            image_rec = self.vae.decode(
                x0_tmp / self.vae.config.scaling_factor, return_dict=False, generator=generator
            )[0]
        else:
            image_rec = self.vae.decode(x0 / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0]

        image_rec = self.image_processor.postprocess(image_rec, output_type="pil")

        # 5. find zs and xts
        variance_noise_shape = (num_inversion_steps, *x0.shape)

        # intermediate latents
        t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
        xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype)

        for t in reversed(timesteps):
            idx = num_inversion_steps - t_to_idx[int(t)] - 1
            noise = randn_tensor(shape=x0.shape, generator=generator, device=self.device, dtype=x0.dtype)
            xts[idx] = self.scheduler.add_noise(x0, noise, t.unsqueeze(0))
        xts = torch.cat([x0.unsqueeze(0), xts], dim=0)

        # noise maps
        zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=negative_prompt_embeds.dtype)

        self.scheduler.set_timesteps(len(self.scheduler.timesteps))

        for t in self.progress_bar(timesteps):
            idx = num_inversion_steps - t_to_idx[int(t)] - 1
            # 1. predict noise residual
            xt = xts[idx + 1]

            latent_model_input = torch.cat([xt] * 2) if do_classifier_free_guidance else xt
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

            added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}

            noise_pred = self.unet(
                latent_model_input,
                t,
                encoder_hidden_states=negative_prompt_embeds,
                cross_attention_kwargs=cross_attention_kwargs,
                added_cond_kwargs=added_cond_kwargs,
                return_dict=False,
            )[0]

            # 2. perform guidance
            if do_classifier_free_guidance:
                noise_pred_out = noise_pred.chunk(2)
                noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1]
                noise_pred = noise_pred_uncond + source_guidance_scale * (noise_pred_text - noise_pred_uncond)

            xtm1 = xts[idx]
            z, xtm1_corrected = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, self.eta)
            zs[idx] = z

            # correction to avoid error accumulation
            xts[idx] = xtm1_corrected

        self.init_latents = xts[-1]
        zs = zs.flip(0)

        if num_zero_noise_steps > 0:
            zs[-num_zero_noise_steps:] = torch.zeros_like(zs[-num_zero_noise_steps:])
        self.zs = zs
        #return LEditsPPInversionPipelineOutput(images=resized, vae_reconstruction_images=image_rec)
        return xts[-1], zs


# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise_ddim
def compute_noise_ddim(scheduler, prev_latents, latents, timestep, noise_pred, eta):
    # 1. get previous step value (=t-1)
    prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps

    # 2. compute alphas, betas
    alpha_prod_t = scheduler.alphas_cumprod[timestep]
    alpha_prod_t_prev = (
        scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod
    )

    beta_prod_t = 1 - alpha_prod_t

    # 3. compute predicted original sample from predicted noise also called
    # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)

    # 4. Clip "predicted x_0"
    if scheduler.config.clip_sample:
        pred_original_sample = torch.clamp(pred_original_sample, -1, 1)

    # 5. compute variance: "sigma_t(Ξ·)" -> see formula (16)
    # Οƒ_t = sqrt((1 βˆ’ Ξ±_tβˆ’1)/(1 βˆ’ Ξ±_t)) * sqrt(1 βˆ’ Ξ±_t/Ξ±_tβˆ’1)
    variance = scheduler._get_variance(timestep, prev_timestep)
    std_dev_t = eta * variance ** (0.5)

    # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * noise_pred

    # modifed so that updated xtm1 is returned as well (to avoid error accumulation)
    mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
    if variance > 0.0:
        noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta)
    else:
        noise = torch.tensor([0.0]).to(latents.device)

    return noise, mu_xt + (eta * variance**0.5) * noise


# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise_sde_dpm_pp_2nd
def compute_noise_sde_dpm_pp_2nd(scheduler, prev_latents, latents, timestep, noise_pred, eta):
    def first_order_update(model_output, sample):  # timestep, prev_timestep, sample):
        sigma_t, sigma_s = scheduler.sigmas[scheduler.step_index + 1], scheduler.sigmas[scheduler.step_index]
        alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s, sigma_s = scheduler._sigma_to_alpha_sigma_t(sigma_s)
        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s = torch.log(alpha_s) - torch.log(sigma_s)

        h = lambda_t - lambda_s

        mu_xt = (sigma_t / sigma_s * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output

        mu_xt = scheduler.dpm_solver_first_order_update(
            model_output=model_output, sample=sample, noise=torch.zeros_like(sample)
        )

        sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h))
        if sigma > 0.0:
            noise = (prev_latents - mu_xt) / sigma
        else:
            noise = torch.tensor([0.0]).to(sample.device)

        prev_sample = mu_xt + sigma * noise
        return noise, prev_sample

    def second_order_update(model_output_list, sample):  # timestep_list, prev_timestep, sample):
        sigma_t, sigma_s0, sigma_s1 = (
            scheduler.sigmas[scheduler.step_index + 1],
            scheduler.sigmas[scheduler.step_index],
            scheduler.sigmas[scheduler.step_index - 1],
        )

        alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t)
        alpha_s0, sigma_s0 = scheduler._sigma_to_alpha_sigma_t(sigma_s0)
        alpha_s1, sigma_s1 = scheduler._sigma_to_alpha_sigma_t(sigma_s1)

        lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
        lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
        lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)

        m0, m1 = model_output_list[-1], model_output_list[-2]

        h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
        r0 = h_0 / h
        D0, D1 = m0, (1.0 / r0) * (m0 - m1)

        mu_xt = (
            (sigma_t / sigma_s0 * torch.exp(-h)) * sample
            + (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
            + 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
        )

        sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h))
        if sigma > 0.0:
            noise = (prev_latents - mu_xt) / sigma
        else:
            noise = torch.tensor([0.0]).to(sample.device)

        prev_sample = mu_xt + sigma * noise

        return noise, prev_sample

    if scheduler.step_index is None:
        scheduler._init_step_index(timestep)

    model_output = scheduler.convert_model_output(model_output=noise_pred, sample=latents)
    for i in range(scheduler.config.solver_order - 1):
        scheduler.model_outputs[i] = scheduler.model_outputs[i + 1]
    scheduler.model_outputs[-1] = model_output

    if scheduler.lower_order_nums < 1:
        noise, prev_sample = first_order_update(model_output, latents)
    else:
        noise, prev_sample = second_order_update(scheduler.model_outputs, latents)

    if scheduler.lower_order_nums < scheduler.config.solver_order:
        scheduler.lower_order_nums += 1

    # upon completion increase step index by one
    scheduler._step_index += 1

    return noise, prev_sample


# Copied from diffusers.pipelines.ledits_pp.pipeline_leditspp_stable_diffusion.compute_noise
def compute_noise(scheduler, *args):
    if isinstance(scheduler, DDIMScheduler):
        return compute_noise_ddim(scheduler, *args)
    elif (
        isinstance(scheduler, DPMSolverMultistepScheduler)
        and scheduler.config.algorithm_type == "sde-dpmsolver++"
        and scheduler.config.solver_order == 2
    ):
        return compute_noise_sde_dpm_pp_2nd(scheduler, *args)
    else:
        raise NotImplementedError