File size: 11,538 Bytes
2b8b77d
 
1eb5467
1314d69
2b8b77d
 
 
 
e2371c5
 
 
 
003a054
978580d
 
 
 
 
003a054
 
1314d69
 
f4548f6
1eb5467
1314d69
e2371c5
 
3753c1a
 
 
e2371c5
cd2465c
7b28dab
718ba97
 
7b28dab
9303de6
efbe74e
1314d69
 
0ab52e6
f217e4d
9a397ea
 
cd7e306
978580d
718ba97
1eb5467
f217e4d
1eb5467
978580d
 
1eb5467
978580d
1eb5467
978580d
1eb5467
978580d
 
f40fb7c
 
cd2465c
dc2976a
f217e4d
1eb5467
f217e4d
64b9ad0
1eb5467
 
9724323
1314d69
dc2976a
cd7e306
978580d
 
1eb5467
978580d
1eb5467
978580d
1eb5467
978580d
 
dc2976a
 
978580d
 
dc2976a
978580d
 
dc2976a
 
1eb5467
4b0fbd1
cd2465c
64b9ad0
dc2976a
 
 
 
 
 
1eb5467
4b0fbd1
b486cec
718ba97
 
1314d69
cd2465c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbab3de
cd2465c
 
 
 
 
 
 
ccc38b8
 
 
 
 
 
 
 
f217e4d
 
 
1eb5467
 
d5a8945
7b9e6e4
1eb5467
718ba97
 
f217e4d
ccc38b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164edec
e4f255d
1eb5467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164edec
1eb5467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164edec
1eb5467
 
 
e4f255d
718ba97
1eb5467
 
718ba97
 
1e4841f
1eb5467
 
 
 
50d6862
164edec
cd2465c
50d6862
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import gradio as gr
import spaces
from clip_slider_pipeline import CLIPSliderFlux
from diffusers import FluxPipeline
import torch
import numpy as np
import cv2
from PIL import Image
from diffusers.utils import load_image
from diffusers.pipelines.flux.pipeline_flux_controlnet import FluxControlNetPipeline
from diffusers.models.controlnet_flux import FluxControlNetModel


def process_controlnet_img(image):
    controlnet_img = np.array(image)
    controlnet_img = cv2.Canny(controlnet_img, 100, 200)
    controlnet_img = HWC3(controlnet_img)
    controlnet_img = Image.fromarray(controlnet_img)

# load pipelines
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", 
                                    torch_dtype=torch.bfloat16)
#pipe.enable_model_cpu_offload()
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))

base_model = 'black-forest-labs/FLUX.1-schnell'
controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Canny-alpha'
# controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
# pipe_controlnet = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
# t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda"))


@spaces.GPU(duration=200)
def generate(slider_x, prompt, seed, recalc_directions, iterations, steps, guidance_scale,
             x_concept_1, x_concept_2, 
             avg_diff_x, 
             img2img_type = None, img = None, 
             controlnet_scale= None, ip_adapter_scale=None,
             
             ):

    # check if avg diff for directions need to be re-calculated
    print("slider_x", slider_x)
    print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2)
    torch.manual_seed(seed)
    
    if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions:
        avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations).to(torch.float16)
        x_concept_1, x_concept_2 = slider_x[0], slider_x[1]

    if img2img_type=="controlnet canny" and img is not None:
        control_img = process_controlnet_img(img)
        image = clip_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
    elif img2img_type=="ip adapter" and img is not None:
        image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
    else: # text to image
        image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
    
    
    #comma_concepts_x = ', '.join(slider_x)
    comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"

    avg_diff_x = avg_diff.cpu()
  
    return gr.update(label=comma_concepts_x, interactive=True), x_concept_1, x_concept_2, avg_diff_x, image

@spaces.GPU
def update_scales(x,prompt,seed, steps, guidance_scale,
                  avg_diff_x, 
                  img2img_type = None, img = None,
                  controlnet_scale= None, ip_adapter_scale=None,):
    avg_diff = avg_diff_x.cuda()
    torch.manual_seed(seed)
    if img2img_type=="controlnet canny" and img is not None:
        control_img = process_controlnet_img(img)
        image = t5_slider_controlnet.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, seed=seed, num_inference_steps=steps, avg_diff=avg_diff) 
    elif img2img_type=="ip adapter" and img is not None:
        image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x,seed=seed, num_inference_steps=steps, avg_diff=avg_diff) 
    else:     
        image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=x,  seed=seed, num_inference_steps=steps, avg_diff=avg_diff) 
    return image



@spaces.GPU
def update_x(x,y,prompt,seed, steps, 
             avg_diff_x, avg_diff_y,
             img2img_type = None,
             img = None):
    avg_diff = avg_diff_x.cuda()
    avg_diff_2nd = avg_diff_y.cuda()
    image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) 
    return image

@spaces.GPU
def update_y(x,y,prompt,seed, steps, 
             avg_diff_x, avg_diff_y,
             img2img_type = None,
             img = None):
    avg_diff = avg_diff_x.cuda()
    avg_diff_2nd = avg_diff_y.cuda()
    image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) 
    return image

def reset_recalc_directions():
    return True

css = '''
#group {
    position: relative;
    width: 420px;
    height: 420px;
    margin-bottom: 20px;
    background-color: white
}
#x {
    position: absolute;
    bottom: 0;
    left: 25px;
    width: 400px;
}
#y {
    position: absolute;
    bottom: 20px;
    left: 67px;
    width: 400px;
    transform: rotate(-90deg);
    transform-origin: left bottom;
}
#image_out{position:absolute; width: 80%; right: 10px; top: 40px}
'''
with gr.Blocks(css=css) as demo:
    gr.Markdown("""
           <div style="text-align: center; font-size: 28px; font-weight: bold; margin-bottom: 20px;">
               Latent Navigation
           </div>
           <div style="text-align: center; font-size: 16px; margin-bottom: 20px;">
               Explorations in CLIP Space πŸͺ
           </div>
               """)
    
    x_concept_1 = gr.State("")
    x_concept_2 = gr.State("")
    # y_concept_1 = gr.State("")
    # y_concept_2 = gr.State("")

    avg_diff_x = gr.State()
    #avg_diff_y = gr.State()

    recalc_directions = gr.State(False)
    
    #with gr.Tab("text2image"):
    with gr.Row():
        with gr.Column():
            slider_x = gr.Dropdown(label="Slider concept range", allow_custom_value=True, multiselect=True, max_choices=2)
            #slider_y = gr.Dropdown(label="Slider Y concept range", allow_custom_value=True, multiselect=True, max_choices=2)
            prompt = gr.Textbox(label="Prompt")
            submit = gr.Button("find directions")
        with gr.Column():
            with gr.Group(elem_id="group"):
              x = gr.Slider(minimum=-3, value=0, maximum=3.5, elem_id="x", interactive=False)
              #y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
              output_image = gr.Image(elem_id="image_out")
            # with gr.Row():
            #     generate_butt = gr.Button("generate")
    
    with gr.Accordion(label="advanced options", open=False):
        iterations = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=400)
        steps = gr.Slider(label = "num inference steps", minimum=1, value=4, maximum=10)
        guidance_scale = gr.Slider(
                label="Guidance scale",
                minimum=0.1,
                maximum=10.0,
                step=0.1,
                value=5,
            )
        # correlation = gr.Slider(
        #         label="correlation",
        #         minimum=0.1,
        #         maximum=1.0,
        #         step=0.05,
        #         value=0.6,
        #     )
        seed  = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
        
       
    # with gr.Tab(label="image2image"):
    #     with gr.Row():
    #         with gr.Column():
    #             image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512))
    #             slider_x_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
    #             slider_y_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2)
    #             img2img_type = gr.Radio(["controlnet canny", "ip adapter"], label="", info="", visible=False, value="controlnet canny")
    #             prompt_a = gr.Textbox(label="Prompt")
    #             submit_a = gr.Button("Submit")
    #         with gr.Column():
    #             with gr.Group(elem_id="group"):
    #               x_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False)
    #               y_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
    #               output_image_a = gr.Image(elem_id="image_out")
    #             with gr.Row():
    #                 generate_butt_a = gr.Button("generate")
        
    #     with gr.Accordion(label="advanced options", open=False):
    #         iterations_a = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=300)
    #         steps_a = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
    #         guidance_scale_a = gr.Slider(
    #                 label="Guidance scale",
    #                 minimum=0.1,
    #                 maximum=10.0,
    #                 step=0.1,
    #                 value=5,
    #             )
    #         controlnet_conditioning_scale = gr.Slider(
    #                 label="controlnet conditioning scale",
    #                 minimum=0.5,
    #                 maximum=5.0,
    #                 step=0.1,
    #                 value=0.7,
    #             )
    #         ip_adapter_scale = gr.Slider(
    #                 label="ip adapter scale",
    #                 minimum=0.5,
    #                 maximum=5.0,
    #                 step=0.1,
    #                 value=0.8,
    #                 visible=False
    #             )
    #         seed_a  = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True)
        
    # submit.click(fn=generate,
    #                  inputs=[slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y],
    #                  outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image])
    submit.click(fn=generate,
                     inputs=[slider_x, prompt, seed, recalc_directions, iterations, steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x],
                     outputs=[x, x_concept_1, x_concept_2, avg_diff_x, output_image])

    iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions])
    seed.change(fn=reset_recalc_directions, outputs=[recalc_directions])
    x.change(fn=update_scales, inputs=[x, prompt, seed, steps, guidance_scale, avg_diff_x], outputs=[output_image])
    # generate_butt_a.click(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, guidance_scale_a, avg_diff_x, avg_diff_y, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a])
    # submit_a.click(fn=generate,
    #                  inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, guidance_scale_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale],
    #                  outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image_a])

        
if __name__ == "__main__":
    demo.launch()