CharadesEgo / lavila /models /timesformer.py
gina9726's picture
Upload demo files
c6f92cc verified
raw
history blame contribute delete
No virus
29.1 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Part of the code is from https://github.com/m-bain/frozen-in-time/blob/main/model/video_transformer.py
# Modified by Yue Zhao
# The original code is under MIT License
"""
Implementations of Video Transformers in PyTorch
A PyTorch implementation of space-time transformer as described in
'Frozen in Time: A Joint Image and Video Encoder for End-to-End Retrieval' - https://arxiv.org/abs/2104.00650
A PyTorch implementation of timesformer as described in
'Is Space-Time Attention All You Need for Video Understanding?' - https://arxiv.org/abs/2102.05095
Acknowledgments:
- This code builds on Ross Wightman's vision_transformer code in pytorch-image-models:
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
- It is also inspired by lucidrains timesformer implementation:
https://github.com/lucidrains/TimeSformer-pytorch
Hacked together by Max Bain
"""
from collections import OrderedDict, defaultdict
from functools import partial, reduce
import operator
import copy
import torch
import torch.utils.checkpoint as checkpoint
from einops import rearrange, repeat
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from torch import einsum, nn
import torch.nn.functional as F
import pdb
from lavila.models.prompt_tuning import VisualPromptLearner, CMM
def attn(q, k, v):
sim = einsum('b i d, b j d -> b i j', q, k)
attn = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', attn, v)
return out
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class VideoPatchEmbed(nn.Module):
""" Video to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768,
num_frames=8, ln_pre=False):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * num_frames
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.num_frames = num_frames
self.embed_dim = embed_dim
# ln_pre is inserted to be compatible with CLIP-style model
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=not ln_pre)
def forward(self, x):
B, F, C, H, W = x.shape
assert F <= self.num_frames
x = x.view(-1, C, H, W)
x = self.proj(x)
return x
class VarAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.,
initialize='random', num_tokens=0):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
if initialize == 'zeros':
self.qkv.weight.data.fill_(0)
self.qkv.bias.data.fill_(0)
# fill proj weight with 1 here to improve training dynamics. Otherwise temporal attention inputs
# are multiplied by 0*0, which is hard for the model to move out of.
self.proj.weight.data.fill_(1)
self.proj.bias.data.fill_(0)
self.attn_drop = nn.Dropout(attn_drop)
self.proj_drop = nn.Dropout(proj_drop)
self.num_tokens = num_tokens
def forward(self, x, einops_from, einops_to, einops_dims, cfg):
style = cfg.get('style', 'default')
pt_att = cfg.get('pt_att', True)
n_seg = cfg.get('n_seg', 4)
if 'VoP' in style:
return self.forward_VoP(x, einops_from, einops_to, einops_dims, n_seg)
elif style == 'attall':
return self.forward_attall(x, pt_att)
else:
return self.forward_features(x, einops_from, einops_to, einops_dims, pt_att)
def forward_features(self, x, einops_from, einops_to, einops_dims, pt_att=True):
h = self.num_heads
num_tokens = self.num_tokens
if self.num_tokens > 0 and not pt_att:
prompts = x[:, 1:self.num_tokens+1, :]
x = torch.cat((
x[:, :1, :], # cls_token
x[:, self.num_tokens+1:, :] # patch embeddings
), dim=1)
num_tokens = 0
# project x to q, k, v values
q, k, v = self.qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
q *= self.scale
# splice out CLS token at index 1 (and prompts)
(cls_q, q_), (cls_k, k_), (cls_v, v_) = map(lambda t: (t[:, 0:num_tokens+1], t[:, num_tokens+1:]), (q, k, v)) # Bh x () x d
# let CLS token attend to key / values of all patches across time and space
cls_out = attn(cls_q, k, v) # Bh x (1 + p) x d
# rearrange across time or space
q_, k_, v_ = map(lambda t: rearrange(t, f'{einops_from} -> {einops_to}', **einops_dims), (q_, k_, v_)) # Bh x NT x d -> Bhr x s x d
# expand cls token keys and values across time or space and concat
r = q_.shape[0] // cls_k.shape[0]
cls_k, cls_v = map(lambda t: repeat(t, 'b p d -> (b r) p d', r=r), (cls_k, cls_v)) # Bhr x (1 + p) x d
k_ = torch.cat((cls_k, k_), dim=1)
v_ = torch.cat((cls_v, v_), dim=1)
# attention
out = attn(q_, k_, v_)
# merge back time or space
out = rearrange(out, f'{einops_to} -> {einops_from}', **einops_dims) # Bh x NT x d
# concat back the cls token
out = torch.cat((cls_out, out), dim=1) # Bh x (1 + p + NT) x d
# merge back the heads
out = rearrange(out, '(b h) n d -> b n (h d)', h=h) # B x (1 + p + NT) x hd
if self.num_tokens > 0 and not pt_att:
out = torch.cat((
out[:, :1, :], # cls_tokens
prompts,
out[:, 1:, :] # patch embeddings
), dim=1)
# to out
x = self.proj(out)
x = self.proj_drop(x)
return x
def forward_VoP(self, x, einops_from, einops_to, einops_dims, n_seg=4):
# position-specific prompts for spatial attention
h = self.num_heads
num_tokens = self.num_tokens
# project x to q, k, v values
q, k, v = self.qkv(x).chunk(3, dim=-1) # B x (1+p+NT) x hd
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) # Bh x (1+p+NT) x d
q *= self.scale
# splice out CLS token at index 1 and prompts
(cls_q, q_), (cls_k, k_), (cls_v, v_) = map(lambda t: (t[:, 0:num_tokens+1], t[:, num_tokens+1:]), (q, k, v)) # Bh x () x d
# let CLS token attend to key / values of all patches across time and space
cls_out = attn(cls_q[:, :1, :], k, v) # cls token: Bh x 1 x d
# segment prompts into s segments in time
pstep = num_tokens // n_seg
pseg = [range(st, en) for st, en in zip(range(1, num_tokens+1, pstep), range(pstep+1, num_tokens+2, pstep))]
p_q, p_k, p_v = map(lambda t: rearrange(t[:, pseg, :], 'b s p d -> (b s) p d'), (cls_q, cls_k, cls_v)) # prompt query: (Bh x n_seg) x p_per_seg x d
# segment patch embeddings into s segments in time
q_, k_, v_ = map(lambda t: rearrange(t, 'b (f n) d -> b f n d', **einops_dims), (q_, k_, v_)) # Bh x T x N x d
num_frames = k_.size(1)
tstep = num_frames // n_seg
tseg = [range(st, en) for st, en in zip(range(0, num_frames, tstep), range(tstep, num_frames+1, tstep))]
q_, k_, v_ = map(lambda t: t[:, tseg, ...], (q_, k_, v_)) # Bh x n_seg x f_per_seg x n x d
q_, k_, v_ = map(lambda t: rearrange(t, 'b s f n d -> (b s) (f n) d'), (q_, k_, v_)) # (Bh x n_seg) x (f_per_seg x n) x d
# concatenate prompts and patch embeddings
k_, v_ = map(lambda t: torch.cat((t[0], t[1]), dim=1), ((p_k, k_), (p_v, v_)))
p_out = attn(p_q, k_, v_) # (Bh x n_seg) x p_per_seg x d
out = attn(q_, k_, v_) # (Bh x n_seg) x (f_per_seg x n) x d
p_out = rearrange(p_out, '(b s) p d -> b (s p) d', s=n_seg) # Bh x p x d
out = rearrange(out, '(b s) (f n) d -> b (s f n) d', s=n_seg, f=tstep) # Bh x NT x d
# merge tokens
out = torch.cat((cls_out, p_out, out), dim=1) # Bh x (1+p+NT) x d
out = rearrange(out, '(b h) n d -> b n (h d)', h=h) # B x (NT+1) x hd
# to out
x = self.proj(out)
x = self.proj_drop(x)
return x
def forward_attall(self, x, pt_att=True):
h = self.num_heads
if self.num_tokens > 0 and not pt_att:
prompts = x[:, 1:self.num_tokens+1, :]
x = torch.cat((
x[:, :1, :], # cls_token
x[:, self.num_tokens+1:, :] # patch embeddings
), dim=1)
# project x to q, k, v values
q, k, v = self.qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
q *= self.scale
# all tokens attend to all tokens
out = attn(q, k, v)
# merge back the heads
out = rearrange(out, '(b h) n d -> b n (h d)', h=h) # B x (1 + p + NT) x hd
if self.num_tokens > 0 and not pt_att:
out = torch.cat((
out[:, :1, :], # cls_tokens
prompts,
out[:, 1:, :] # patch embeddings
), dim=1)
# to out
x = self.proj(out)
x = self.proj_drop(x)
return x
class SpaceTimeBlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, time_init='zeros',
attention_style='frozen-in-time', is_tanh_gating=False, num_tokens=0, split_st=False):
super().__init__()
self.split_st = split_st # split spatial and temporal prompts
if split_st:
num_tokens = num_tokens // 2
self.num_tokens = num_tokens # learnable prompts
self.norm1 = norm_layer(dim)
self.attn = VarAttention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, num_tokens=num_tokens)
self.timeattn = VarAttention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, num_tokens=num_tokens,
initialize=time_init)
if is_tanh_gating:
self.alpha_timeattn = nn.Parameter(torch.zeros([]))
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.norm3 = norm_layer(dim)
self.attention_style = attention_style
def forward(self, x, einops_from_space, einops_to_space, einops_from_time, einops_to_time,
time_n, space_f, use_checkpoint=False, pt_spt=True, pt_tmp=True, style='default', n_seg=4):
if self.split_st:
spatial_prompts = x[:, 1:self.num_tokens+1, :]
x = torch.cat((
x[:, :1, :], # cls_token
x[:, self.num_tokens+1:, :] # temporal prompts and patch embeddings
), dim=1)
if use_checkpoint:
time_output = checkpoint.checkpoint(
self.timeattn, self.norm3(x), einops_from_time, einops_to_time, {"n": time_n}, {'pt_att': pt_tmp}
)
else:
time_output = self.timeattn(self.norm3(x), einops_from_time, einops_to_time, {"n": time_n}, {'pt_att': pt_tmp})
if hasattr(self, "alpha_timeattn"):
time_output = torch.tanh(self.alpha_timeattn) * time_output
time_residual = x + time_output
if self.split_st:
temporal_prompts = time_residual[:, 1:self.num_tokens+1, :]
time_residual = torch.cat((
time_residual[:, :1, :], # cls_token
spatial_prompts,
time_residual[:, self.num_tokens+1:, :] # patch embeddings
), dim=1)
cfg = {'style': style, 'pt_att': pt_spt, 'n_seg': n_seg}
if use_checkpoint:
space_output = checkpoint.checkpoint(
self.attn, self.norm1(time_residual), einops_from_space, einops_to_space, {"f": space_f}, cfg
)
else:
space_output = self.attn(self.norm1(time_residual), einops_from_space,
einops_to_space, {"f": space_f}, cfg)
if self.attention_style == 'frozen-in-time':
space_residual = x + self.drop_path(space_output)
else:
raise NotImplementedError
if self.split_st:
space_residual = torch.cat((
space_residual[:, :self.num_tokens+1, :], # cls_token and spacial prompts
temporal_prompts,
space_residual[:, self.num_tokens+1:, :] # patch embeddings
), dim=1)
x = space_residual + self.drop_path(self.mlp(self.norm2(space_residual)))
return x
class SpaceTimeTransformer(nn.Module):
""" Vision Transformer
A PyTorch impl of : `Space-Time Transformer` from Frozen-in-time - by Max Bain.
https://arxiv.org/abs/2104.00650
Based off:
- ViT implementation from the timm library [https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py]
lucidrains timesformer implementation [https://github.com/lucidrains/TimeSformer-pytorch].
Notable differences:
- allows for variable length input frames (<= num_frames)
- allows for variable length input resolution (<= (img_size, img_size)) [UNTESTED]
- different attention block mechanism
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=None,
num_frames=8, time_init='rand', attention_style='frozen-in-time', ln_pre=False,
act_layer=nn.GELU, is_tanh_gating=False, tune_bias=False, prompt_cfg={}):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_chans (int): number of input channels
num_classes (int): number of classes for classification head
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
hybrid_backbone (nn.Module): CNN backbone to use in-place of PatchEmbed module
norm_layer: (nn.Module): normalization layer
num_frames: (int) maximum number of frames expected as input
time_init: (str) how to initialise the time attention layer, 'zeros' allows for the timesformer to start off
as ViT.
attention_style: (str) how to attend to space and time.
"""
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.num_frames = num_frames
self.embed_dim = embed_dim
self.tune_bias = tune_bias
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
print("######USING ATTENTION STYLE: ", attention_style)
self.param_list = []
if hybrid_backbone is not None:
raise NotImplementedError('hybrid backbone not implemented')
else:
self.patch_embed = VideoPatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, num_frames=num_frames, ln_pre=ln_pre)
self.param_list += list(self.patch_embed.parameters())
num_patches = self.patch_embed.num_patches
self.patches_per_frame = num_patches // num_frames
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(
torch.zeros(1, self.patches_per_frame + 1,
embed_dim)) # remember to take pos_embed[1:] for tiling over time
self.temporal_embed = nn.Parameter(torch.zeros(1, num_frames, embed_dim))
self.param_list += [self.cls_token, self.pos_embed, self.temporal_embed]
if ln_pre:
self.ln_pre = nn.LayerNorm(embed_dim)
if self.tune_bias:
self.param_list += [m for n, m in self.ln_pre.named_parameters() if 'bias' not in n]
else:
self.param_list += list(self.ln_pre.parameters())
else:
self.ln_pre = None
self.pos_drop = nn.Dropout(p=drop_rate)
# config for prompts
self.num_tokens = prompt_cfg.get('num_tokens', 0)
self.prompt_dim = prompt_cfg.get('prompt_dim', 768)
self.pt_spt = prompt_cfg.pop('pt_spt', True)
self.pt_tmp = prompt_cfg.pop('pt_tmp', True)
self.style = prompt_cfg.pop('style', 'default')
self.query = prompt_cfg.pop('query', 'cls')
self.n_seg = prompt_cfg.pop('n_seg', 4)
self.k_s = prompt_cfg.pop('K_s', depth)
self.st = prompt_cfg.pop('st', 0)
self.end = prompt_cfg.pop('end', depth)
assert self.st <= self.end
if self.style == 'default':
print(f'Prompting {self.st}-{self.end} layer of the visual backbone')
elif self.style == 'VoP_c' and self.k_s < depth:
self.prompt_embed = nn.Parameter(torch.zeros(1, num_frames, embed_dim))
elif self.style == 'VoP_c_pool':
self.prompt_temp_embed = nn.Parameter(torch.zeros(1, self.n_seg, embed_dim))
trunc_normal_(self.prompt_temp_embed, std=.02)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
blocks = []
for i in range(depth):
stblk_cfg = {}
if self.num_tokens > 0:
stblk_cfg = {'num_tokens': prompt_cfg['num_tokens'], 'split_st': prompt_cfg.get('split_st', False)}
blocks.append(
SpaceTimeBlock(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, time_init=time_init,
attention_style=attention_style, act_layer=act_layer, is_tanh_gating=is_tanh_gating, **stblk_cfg)
)
self.blocks = nn.ModuleList(blocks)
self.norm = norm_layer(embed_dim)
if self.tune_bias:
self.param_list += reduce(operator.add, [[m for n, m in x.named_parameters() if 'bias' not in n] for x in self.blocks])
self.param_list += [m for n, m in self.norm.named_parameters() if 'bias' not in n]
else:
self.param_list += reduce(operator.add, [list(x.parameters()) for x in self.blocks])
self.param_list += list(self.norm.parameters())
# Representation layer
if representation_size:
self.num_features = representation_size
self.pre_logits = nn.Sequential(OrderedDict([
('fc', nn.Linear(embed_dim, representation_size)),
('act', nn.Tanh())
]))
if self.tune_bias:
self.param_list += [m for n, m in self.pre_logits.named_parameters() if 'bias' not in n]
else:
self.param_list += list(self.pre_logits.parameters())
else:
self.pre_logits = nn.Identity()
# Classifier head
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
# if num_frames > 1, then we perform ViT inflation and initialise time attention to zero so not necessary.
if num_frames == 1:
self.apply(self._init_weights)
# einops transformations
self.einops_from_space = 'b (f n) d'
self.einops_to_space = '(b f) n d'
self.einops_from_time = 'b (f n) d'
self.einops_to_time = '(b n) f d'
# freeze the backbone and only learn the prompts
self.prompt_learner = None
if self.num_tokens > 0:
if 'VoP_c' in self.style:
pool = prompt_cfg.pop('pool', {}) if 'pool' in self.style else {}
if self.k_s > 0:
self.prompt_generator = CMM(self.num_tokens // self.n_seg, self.n_seg, embed_dim, self.prompt_dim, num_layer=self.k_s, \
shared=prompt_cfg.get('deep_shared', False), pool=pool)
n_prompt_layer = depth - self.k_s
else:
n_prompt_layer = self.end - self.st
if n_prompt_layer > 0:
prompt_cfg['num_layers'] = n_prompt_layer
prompt_cfg['prompt_dim'] = embed_dim
self.prompt_learner = VisualPromptLearner(patch_size, embed_dim, **prompt_cfg)
for p in self.param_list:
p.requies_grad = False
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x, use_checkpoint=False, cls_at_last=True, istrain=False, gamma=1.0):
# print(x.shape)
b, curr_frames, channels, _, _ = x.shape
x = self.patch_embed(x)
x = x.flatten(2).transpose(2, 1)
x = x.reshape(b, -1, self.patch_embed.embed_dim)
BF = x.shape[0]
cls_tokens = self.cls_token.expand(BF, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
# positional embed needs to be tiled for each frame (this does [1,2,3] --> [1,2,3,1,2,3]...)
cls_embed = self.pos_embed[:, 0, :].unsqueeze(1)
tile_pos_embed = self.pos_embed[:, 1:, :].repeat(1, self.num_frames, 1)
# temporal embed needs to be repeated within each frame (this does [1,2,3] --> [1,1,1,2,2,2,3,3,3]...)
tile_temporal_embed = self.temporal_embed.repeat_interleave(self.patches_per_frame, 1)
total_pos_embed = tile_pos_embed + tile_temporal_embed
total_pos_embed = torch.cat([cls_embed, total_pos_embed], dim=1) # 1 x (NT + 1) x D
curr_patches = x.shape[1]
x = x + total_pos_embed[:, :curr_patches] # B x (NT + 1) x D
ps_loss = x.new_zeros([1])
# incorporate prompts
if self.num_tokens > 0:
if 'VoP_c' in self.style and self.k_s > 0:
ctx, ps = self.prompt_generator(x[:, 1:, :], 0, istrain=istrain, gamma=gamma)
ps_loss += ps
if self.prompt_generator.use_bank:
prompt_temp_embed = self.prompt_temp_embed.repeat_interleave(self.num_tokens // self.n_seg, 1)
ctx = ctx + prompt_temp_embed
elif self.prompt_learner is not None:
ctx, ps = self.prompt_learner(x[:, :1, :], 0, istrain=istrain, gamma=gamma)
ps_loss += ps
if ctx.size(0) != BF:
ctx = ctx.expand(BF, -1, -1)
x = torch.cat((
x[:, :1, :], # cls_token
ctx,
x[:, 1:, :]
), dim=1)
if self.ln_pre is not None:
x = self.ln_pre(x)
x = self.pos_drop(x)
n = self.patches_per_frame
f = curr_frames
for i, blk in enumerate(self.blocks):
if self.num_tokens > 0 and i > 0 and i >= self.st and i < self.end:
if 'VoP_c' in self.style:
if i < self.k_s:
ctx, ps = self.prompt_generator(x[:, self.num_tokens+1:, :], i, istrain=istrain, gamma=gamma)
ps_loss += ps
if self.prompt_generator.use_bank:
prompt_temp_embed = self.prompt_temp_embed.repeat_interleave(self.num_tokens // self.n_seg, 1)
ctx = ctx + prompt_temp_embed
else:
ctx, ps = self.prompt_learner(x[:, :1, :], i-self.k_s, istrain=istrain, gamma=gamma)
ps_loss += ps
if 'pool' in self.style:
prompt_embed = self.prompt_temp_embed.repeat_interleave(self.num_tokens // self.n_seg, 1)
else:
prompt_embed = self.prompt_embed.repeat_interleave(self.num_tokens // self.num_frames, 1)
ctx = ctx + prompt_embed
if ctx.size(0) != BF:
ctx = ctx.expand(BF, -1, -1)
elif (i - self.st) < self.prompt_learner.num_layers:
ctx, ps = self.prompt_learner(x[:, :1, :], i-self.st, istrain=istrain, gamma=gamma)
ps_loss += ps
if ctx.size(0) != BF:
ctx = ctx.expand(BF, -1, -1)
x = torch.cat((
x[:, :1, :], # cls_token
ctx,
x[:, self.num_tokens+1:, :]
), dim=1)
style = 'default' if i >= self.k_s else self.style
pt_tmp = self.pt_tmp if i >= self.st and i < self.end else False
pt_spt = self.pt_spt if i >= self.st and i < self.end else False
x = blk(x, self.einops_from_space, self.einops_to_space, self.einops_from_time,
self.einops_to_time,
time_n=n, space_f=f, use_checkpoint=use_checkpoint, pt_spt=pt_spt,
pt_tmp=pt_tmp, style=style, n_seg=self.n_seg)
if cls_at_last:
x = self.norm(x)
x = x[:, 0]
x = self.pre_logits(x)
return x, ps_loss
else:
return self.norm(x), ps_loss
def forward(self, x, use_checkpoint=False, istrain=False, gamma=1.0):
# Note: B C T H W => B T C H W
# The default input order is different from the one in Frozen-in-Time
x = x.permute(0, 2, 1, 3, 4).contiguous()
x, ps_loss = self.forward_features(x, use_checkpoint=use_checkpoint, istrain=istrain, gamma=gamma)
x = self.head(x)
return x, ps_loss
def train(self, mode=True):
if not isinstance(mode, bool):
raise ValueError("training mode is expected to be boolean")
self.training = mode
for m in self.modules():
m.training = mode
if mode and self.num_tokens > 0:
for n, m in self.named_modules():
if 'prompt' not in n:
m.training = False