import numpy as np import pandas as pd import re import os import cloudpickle from transformers import (DebertaTokenizerFast, TFAutoModelForTokenClassification, BartTokenizerFast, TFAutoModelForSeq2SeqLM) import tensorflow as tf import spacy import streamlit as st from scraper import scrape_text os.environ['TF_USE_LEGACY_KERAS'] = "1" class NERLabelEncoder: ''' Label Encoder to encode and decode the entity labels ''' def __init__(self): self.label_mapping = {'O': 0, 'B-geo': 1, 'I-geo': 2, 'B-gpe': 3, 'I-gpe': 4, 'B-per': 5, 'I-per': 6, 'B-org': 7, 'I-org': 8, 'B-tim': 9, 'I-tim': 10, 'B-art': 11, 'I-art': 12, 'B-nat': 13, 'I-nat': 14, 'B-eve': 15, 'I-eve': 16, '[CLS]': -100, '[SEP]': -100} self.inverse_label_mapping = {} def fit(self): self.inverse_label_mapping = {value: key for key, value in self.label_mapping.items()} return self def transform(self, x: pd.Series): x = x.map(self.label_mapping) return x def inverse_transform(self, x: pd.Series): x = x.map(self.inverse_label_mapping) return x ############ NER MODEL & VARS INITIALIZATION START #################### NER_CHECKPOINT = "microsoft/deberta-base" NER_N_TOKENS = 50 NER_N_LABELS = 18 NER_COLOR_MAP = {'GEO': '#DFFF00', 'GPE': '#FFBF00', 'PER': '#9FE2BF', 'ORG': '#40E0D0', 'TIM': '#CCCCFF', 'ART': '#FFC0CB', 'NAT': '#FFE4B5', 'EVE': '#DCDCDC'} @st.cache_resource def load_ner_models(): ner_model = TFAutoModelForTokenClassification.from_pretrained(NER_CHECKPOINT, num_labels=NER_N_LABELS, attention_probs_dropout_prob=0.4, hidden_dropout_prob=0.4) ner_model.load_weights(os.path.join("models", "general_ner_deberta_weights.h5"), by_name=True) ner_label_encoder = NERLabelEncoder() ner_label_encoder.fit() ner_tokenizer = DebertaTokenizerFast.from_pretrained(NER_CHECKPOINT, add_prefix_space=True) nlp = spacy.load(os.path.join('.', 'en_core_web_sm-3.6.0')) print('Loaded NER models') return ner_model, ner_label_encoder, ner_tokenizer, nlp ner_model, ner_label_encoder, ner_tokenizer, nlp = load_ner_models() ############ NER MODEL & VARS INITIALIZATION END #################### ############ NER LOGIC START #################### def softmax(x): return tf.exp(x) / tf.math.reduce_sum(tf.exp(x)) def ner_process_output(res): ''' Function to concatenate sub-word tokens, labels and compute mean prediction probability of tokens ''' d = {} result = [] pred_prob = [] res.append(['-', 'B-b', 0]) for n, i in enumerate(res): try: split = i[1].split('-') token = i[0] token_prob = i[2] prefix, suffix = split if prefix == 'B': if len(d) != 0: result.append([(re.sub(r"[^\x00-\x7F]+", '', token.replace("Ġ", " ").strip()), label, np.mean(pred_prob)) for label, token in d.items()][0]) d = {} pred_prob = [] pred_prob.append(token_prob) d[suffix] = token else: d[suffix] = d[suffix] + token pred_prob.append(token_prob) except: continue return result def ner_inference(txt): ''' Function that returns model prediction and prediction probabitliy ''' test_data = [txt] # tokenizer = DebertaTokenizerFast.from_pretrained(NER_CHECKPOINT, add_prefix_space=True) tokens = ner_tokenizer.tokenize(txt) tokenized_data = ner_tokenizer(test_data, is_split_into_words=True, max_length=NER_N_TOKENS, truncation=True, padding="max_length") token_idx_to_consider = tokenized_data.word_ids() token_idx_to_consider = [i for i in range(len(token_idx_to_consider)) if token_idx_to_consider[i] is not None] input_ = [tokenized_data['input_ids'], tokenized_data['attention_mask']] pred_logits = ner_model.predict(input_, verbose=0).logits[0] pred_prob = tf.map_fn(softmax, pred_logits) pred_idx = tf.argmax(pred_prob, axis=-1).numpy() pred_idx = pred_idx[token_idx_to_consider] pred_prob = tf.math.reduce_max(pred_prob, axis=-1).numpy() pred_prob = np.round(pred_prob[token_idx_to_consider], 3) pred_labels = ner_label_encoder.inverse_transform(pd.Series(pred_idx)) result = [[token, label, prob] for token, label, prob in zip(tokens, pred_labels, pred_prob) if label.find('-') >= 0] output = ner_process_output(result) return output def ner_inference_long_text(txt): entities = [] doc = nlp(txt) n_sents = len([_ for _ in doc.sents]) n = 0 progress_bar = st.progress(0, text=f'Processed 0 / {n_sents} sentences') for sent in doc.sents: entities.extend(ner_inference(sent.text)) n += 1 progress_bar.progress(n / n_sents, text=f'Processed {n} / {n_sents} sentences') # progress_bar.empty() return entities def get_ner_text(article_txt, ner_result): res_txt = '' start = 0 prev_start = 0 for i in ner_result: try: span = next(re.finditer(fr'{i[0]}', article_txt)).span() start = span[0] end = span[1] res_txt += article_txt[prev_start:start] repl_str = f'''{article_txt[start:end].strip()} {i[1]} ({str(np.round(i[2], 3))})''' res_txt += article_txt[start:end].replace(article_txt[start:end], repl_str) prev_start = 0 article_txt = article_txt[end:] except: continue res_txt += article_txt return res_txt ############ NER LOGIC END #################### ############ SUMMARIZATION MODEL & VARS INITIALIZATION START #################### SUMM_CHECKPOINT = "facebook/bart-base" SUMM_INPUT_N_TOKENS = 400 SUMM_TARGET_N_TOKENS = 300 @st.cache_resource def load_summarizer_models(): summ_tokenizer = BartTokenizerFast.from_pretrained(SUMM_CHECKPOINT) summ_model = TFAutoModelForSeq2SeqLM.from_pretrained(SUMM_CHECKPOINT) summ_model.load_weights(os.path.join("models", "bart_en_summarizer.h5"), by_name=True) print('Loaded summarizer models') return summ_tokenizer, summ_model summ_tokenizer, summ_model = load_summarizer_models() def summ_preprocess(txt): txt = re.sub(r'^By \. [\w\s]+ \. ', ' ', txt) # By . Ellie Zolfagharifard . txt = re.sub(r'\d{1,2}\:\d\d [a-zA-Z]{3}', ' ', txt) # 10:30 EST txt = re.sub(r'\d{1,2} [a-zA-Z]+ \d{4}', ' ', txt) # 10 November 1990 txt = txt.replace('PUBLISHED:', ' ') txt = txt.replace('UPDATED', ' ') txt = re.sub(r' [\,\.\:\'\;\|] ', ' ', txt) # remove puncts with spaces before and after txt = txt.replace(' : ', ' ') txt = txt.replace('(CNN)', ' ') txt = txt.replace('--', ' ') txt = re.sub(r'^\s*[\,\.\:\'\;\|]', ' ', txt) # remove puncts at beginning of sent txt = re.sub(r' [\,\.\:\'\;\|] ', ' ', txt) # remove puncts with spaces before and after txt = re.sub(r'\n+',' ', txt) txt = " ".join(txt.split()) return txt def summ_inference_tokenize(input_: list, n_tokens: int): tokenized_data = summ_tokenizer(text=input_, max_length=SUMM_TARGET_N_TOKENS, truncation=True, padding="max_length", return_tensors="tf") return summ_tokenizer, tokenized_data def clean_summary(summary: str): summary = summary.strip() if summary[-1] != '.': sents = summary.split(". ") summary = ". ".join(sents[:-1]) summary += "." summary = re.sub(r'^-', "", summary) summary = summary.strip() if len(summary) <= 5: summary = "" return summary def summ_inference(txt: str): txt = summ_preprocess(txt) inference_tokenizer, tokenized_data = summ_inference_tokenize(input_=[txt], n_tokens=SUMM_INPUT_N_TOKENS) pred = summ_model.generate(**tokenized_data, max_new_tokens=SUMM_TARGET_N_TOKENS) result = "" if txt=="" else clean_summary(inference_tokenizer.decode(pred[0], skip_special_tokens=True)) return result ############ SUMMARIZATION MODEL & VARS INITIALIZATION END #################### ############## ENTRY POINT START ####################### def main(): st.markdown('''

News Summarizer and NER

README
The app works best in summarizing CNN and Daily Mail news articles, as the BART model is fine-tuned on them.

''', unsafe_allow_html=True) input_type = st.radio('Select an option:', ['Paste news URL', 'Paste news text'], horizontal=True) scrape_error = None summary_error = None ner_error = None summ_result = None ner_result = None ner_df = None article_txt = None if input_type == 'Paste news URL': article_url = st.text_input("Paste the URL of a news article", "") if (st.button("Submit")) or (article_url): with st.status("Processing...", expanded=True) as status: status.empty() # Scraping data Start try: st.info("Scraping data from the URL.", icon="ℹ️") article_txt = scrape_text(article_url) st.success("Successfully scraped the data.", icon="✅") except Exception as e: article_txt = None scrape_error = str(e) # Scraping data End if article_txt is not None: article_txt = re.sub(r'\n+',' ', article_txt) # Generating summary start try: st.info("Generating the summary.", icon="ℹ️") summ_result = summ_inference(article_txt) except Exception as e: summ_result = None summary_error = str(e) if summ_result is not None: st.success("Successfully generated the summary.", icon="✅") else: st.error("Encountered an error while generating the summary.", icon="🚨") # Generating summary end # NER start try: st.info("Recognizing the entites.", icon="ℹ️") ner_result = [[ent, label.upper(), np.round(prob, 3)] for ent, label, prob in ner_inference_long_text(article_txt)] ner_df = pd.DataFrame(ner_result, columns=['entity', 'label', 'confidence']) ner_result = get_ner_text(article_txt, ner_result).replace('$', '\$') except Exception as e: ner_result = None ner_error = str(e) if ner_result is not None: st.success("Successfully recognized the entites.", icon="✅") else: st.error("Encountered an error while recognizing the entites.", icon="🚨") # NER end else: st.error("Encountered an error while scraping the data.", icon="🚨") if (scrape_error is None) and (summary_error is None) and (ner_error is None): status.update(label="Done", state="complete", expanded=False) else: status.update(label="Error", state="error", expanded=False) if scrape_error is not None: st.error(f"Scrape Error: \n{scrape_error}", icon="🚨") else: if summary_error is not None: st.error(f"Summary Error: \n{summary_error}", icon="🚨") else: st.markdown(f"

SUMMARY:

{summ_result}", unsafe_allow_html=True) if ner_error is not None: st.error(f"NER Error \n{ner_error}", icon="🚨") else: st.markdown(f"

ENTITIES:

{ner_result}", unsafe_allow_html=True) # st.dataframe(ner_df, use_container_width=True) st.markdown(f"

SCRAPED TEXT:

{article_txt}", unsafe_allow_html=True) else: article_txt = st.text_area("Paste the text of a news article", "", height=150) if (st.button("Submit")) or (article_txt): with st.status("Processing...", expanded=True) as status: article_txt = re.sub(r'\n+',' ', article_txt) # Generating summary start try: st.info("Generating the summary.", icon="ℹ️") summ_result = summ_inference(article_txt) except Exception as e: summ_result = None summary_error = str(e) if summ_result is not None: st.success("Successfully generated the summary.", icon="✅") else: st.error("Encountered an error while generating the summary.", icon="🚨") # Generating summary end # NER start try: st.info("Recognizing the entites.", icon="ℹ️") ner_result = [[ent, label.upper(), np.round(prob, 3)] for ent, label, prob in ner_inference_long_text(article_txt)] ner_df = pd.DataFrame(ner_result, columns=['entity', 'label', 'confidence']) ner_result = get_ner_text(article_txt, ner_result).replace('$', '\$') except Exception as e: ner_result = None ner_error = str(e) if ner_result is not None: st.success("Successfully recognized the entites.", icon="✅") else: st.error("Encountered an error while recognizing the entites.", icon="🚨") # NER end if (summary_error is None) and (ner_error is None): status.update(label="Done", state="complete", expanded=False) else: status.update(label="Error", state="error", expanded=False) if summary_error is not None: st.error(f"Summary Error: \n{summary_error}", icon="🚨") else: st.markdown(f"

SUMMARY:

{summ_result}", unsafe_allow_html=True) if ner_error is not None: st.error(f"NER Error \n{ner_error}", icon="🚨") else: st.markdown(f"

ENTITIES:

{ner_result}", unsafe_allow_html=True) # st.dataframe(ner_df, use_container_width=True) ############## ENTRY POINT END ####################### if __name__ == "__main__": main()