|
|
|
import math |
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from einops import rearrange |
|
|
|
from audioldm.utils import instantiate_from_config |
|
from audioldm.latent_diffusion.attention import LinearAttention |
|
|
|
def get_timestep_embedding(timesteps, embedding_dim): |
|
""" |
|
This matches the implementation in Denoising Diffusion Probabilistic Models: |
|
From Fairseq. |
|
Build sinusoidal embeddings. |
|
This matches the implementation in tensor2tensor, but differs slightly |
|
from the description in Section 3.5 of "Attention Is All You Need". |
|
""" |
|
assert len(timesteps.shape) == 1 |
|
|
|
half_dim = embedding_dim // 2 |
|
emb = math.log(10000) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) |
|
emb = emb.to(device=timesteps.device) |
|
emb = timesteps.float()[:, None] * emb[None, :] |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) |
|
return emb |
|
|
|
def nonlinearity(x): |
|
|
|
return x * torch.sigmoid(x) |
|
|
|
|
|
def Normalize(in_channels, num_groups=32): |
|
return torch.nn.GroupNorm( |
|
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True |
|
) |
|
|
|
|
|
class Upsample(nn.Module): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
self.conv = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, x): |
|
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") |
|
if self.with_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class UpsampleTimeStride4(nn.Module): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
self.conv = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=5, stride=1, padding=2 |
|
) |
|
|
|
def forward(self, x): |
|
x = torch.nn.functional.interpolate(x, scale_factor=(4.0, 2.0), mode="nearest") |
|
if self.with_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Downsample(nn.Module): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
|
|
|
|
self.conv = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=3, stride=2, padding=0 |
|
) |
|
|
|
def forward(self, x): |
|
if self.with_conv: |
|
pad = (0, 1, 0, 1) |
|
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) |
|
x = self.conv(x) |
|
else: |
|
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) |
|
return x |
|
|
|
|
|
class DownsampleTimeStride4(nn.Module): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
|
|
|
|
self.conv = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=5, stride=(4, 2), padding=1 |
|
) |
|
|
|
def forward(self, x): |
|
if self.with_conv: |
|
pad = (0, 1, 0, 1) |
|
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) |
|
x = self.conv(x) |
|
else: |
|
x = torch.nn.functional.avg_pool2d(x, kernel_size=(4, 2), stride=(4, 2)) |
|
return x |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
in_channels, |
|
out_channels=None, |
|
conv_shortcut=False, |
|
dropout, |
|
temb_channels=512, |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
|
|
self.norm1 = Normalize(in_channels) |
|
self.conv1 = torch.nn.Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
if temb_channels > 0: |
|
self.temb_proj = torch.nn.Linear(temb_channels, out_channels) |
|
self.norm2 = Normalize(out_channels) |
|
self.dropout = torch.nn.Dropout(dropout) |
|
self.conv2 = torch.nn.Conv2d( |
|
out_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
self.conv_shortcut = torch.nn.Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
else: |
|
self.nin_shortcut = torch.nn.Conv2d( |
|
in_channels, out_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
def forward(self, x, temb): |
|
h = x |
|
h = self.norm1(h) |
|
h = nonlinearity(h) |
|
h = self.conv1(h) |
|
|
|
if temb is not None: |
|
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] |
|
|
|
h = self.norm2(h) |
|
h = nonlinearity(h) |
|
h = self.dropout(h) |
|
h = self.conv2(h) |
|
|
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
x = self.conv_shortcut(x) |
|
else: |
|
x = self.nin_shortcut(x) |
|
|
|
return x + h |
|
|
|
|
|
class LinAttnBlock(LinearAttention): |
|
"""to match AttnBlock usage""" |
|
|
|
def __init__(self, in_channels): |
|
super().__init__(dim=in_channels, heads=1, dim_head=in_channels) |
|
|
|
|
|
class AttnBlock(nn.Module): |
|
def __init__(self, in_channels): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
|
|
self.norm = Normalize(in_channels) |
|
self.q = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.k = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.v = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.proj_out = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
def forward(self, x): |
|
h_ = x |
|
h_ = self.norm(h_) |
|
q = self.q(h_) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
|
|
b, c, h, w = q.shape |
|
q = q.reshape(b, c, h * w).contiguous() |
|
q = q.permute(0, 2, 1).contiguous() |
|
k = k.reshape(b, c, h * w).contiguous() |
|
w_ = torch.bmm(q, k).contiguous() |
|
w_ = w_ * (int(c) ** (-0.5)) |
|
w_ = torch.nn.functional.softmax(w_, dim=2) |
|
|
|
|
|
v = v.reshape(b, c, h * w).contiguous() |
|
w_ = w_.permute(0, 2, 1).contiguous() |
|
h_ = torch.bmm( |
|
v, w_ |
|
).contiguous() |
|
h_ = h_.reshape(b, c, h, w).contiguous() |
|
|
|
h_ = self.proj_out(h_) |
|
|
|
return x + h_ |
|
|
|
|
|
def make_attn(in_channels, attn_type="vanilla"): |
|
assert attn_type in ["vanilla", "linear", "none"], f"attn_type {attn_type} unknown" |
|
|
|
if attn_type == "vanilla": |
|
return AttnBlock(in_channels) |
|
elif attn_type == "none": |
|
return nn.Identity(in_channels) |
|
else: |
|
return LinAttnBlock(in_channels) |
|
|
|
|
|
class Model(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
ch, |
|
out_ch, |
|
ch_mult=(1, 2, 4, 8), |
|
num_res_blocks, |
|
attn_resolutions, |
|
dropout=0.0, |
|
resamp_with_conv=True, |
|
in_channels, |
|
resolution, |
|
use_timestep=True, |
|
use_linear_attn=False, |
|
attn_type="vanilla", |
|
): |
|
super().__init__() |
|
if use_linear_attn: |
|
attn_type = "linear" |
|
self.ch = ch |
|
self.temb_ch = self.ch * 4 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
|
|
self.use_timestep = use_timestep |
|
if self.use_timestep: |
|
|
|
self.temb = nn.Module() |
|
self.temb.dense = nn.ModuleList( |
|
[ |
|
torch.nn.Linear(self.ch, self.temb_ch), |
|
torch.nn.Linear(self.temb_ch, self.temb_ch), |
|
] |
|
) |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d( |
|
in_channels, self.ch, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
curr_res = resolution |
|
in_ch_mult = (1,) + tuple(ch_mult) |
|
self.down = nn.ModuleList() |
|
for i_level in range(self.num_resolutions): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_in = ch * in_ch_mult[i_level] |
|
block_out = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks): |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(make_attn(block_in, attn_type=attn_type)) |
|
down = nn.Module() |
|
down.block = block |
|
down.attn = attn |
|
if i_level != self.num_resolutions - 1: |
|
down.downsample = Downsample(block_in, resamp_with_conv) |
|
curr_res = curr_res // 2 |
|
self.down.append(down) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) |
|
self.mid.block_2 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
|
|
|
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = ch * ch_mult[i_level] |
|
skip_in = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks + 1): |
|
if i_block == self.num_res_blocks: |
|
skip_in = ch * in_ch_mult[i_level] |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in + skip_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(make_attn(block_in, attn_type=attn_type)) |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
up.upsample = Upsample(block_in, resamp_with_conv) |
|
curr_res = curr_res * 2 |
|
self.up.insert(0, up) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d( |
|
block_in, out_ch, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, x, t=None, context=None): |
|
|
|
if context is not None: |
|
|
|
x = torch.cat((x, context), dim=1) |
|
if self.use_timestep: |
|
|
|
assert t is not None |
|
temb = get_timestep_embedding(t, self.ch) |
|
temb = self.temb.dense[0](temb) |
|
temb = nonlinearity(temb) |
|
temb = self.temb.dense[1](temb) |
|
else: |
|
temb = None |
|
|
|
|
|
hs = [self.conv_in(x)] |
|
for i_level in range(self.num_resolutions): |
|
for i_block in range(self.num_res_blocks): |
|
h = self.down[i_level].block[i_block](hs[-1], temb) |
|
if len(self.down[i_level].attn) > 0: |
|
h = self.down[i_level].attn[i_block](h) |
|
hs.append(h) |
|
if i_level != self.num_resolutions - 1: |
|
hs.append(self.down[i_level].downsample(hs[-1])) |
|
|
|
|
|
h = hs[-1] |
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks + 1): |
|
h = self.up[i_level].block[i_block]( |
|
torch.cat([h, hs.pop()], dim=1), temb |
|
) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block](h) |
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
|
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
def get_last_layer(self): |
|
return self.conv_out.weight |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
ch, |
|
out_ch, |
|
ch_mult=(1, 2, 4, 8), |
|
num_res_blocks, |
|
attn_resolutions, |
|
dropout=0.0, |
|
resamp_with_conv=True, |
|
in_channels, |
|
resolution, |
|
z_channels, |
|
double_z=True, |
|
use_linear_attn=False, |
|
attn_type="vanilla", |
|
downsample_time_stride4_levels=[], |
|
**ignore_kwargs, |
|
): |
|
super().__init__() |
|
if use_linear_attn: |
|
attn_type = "linear" |
|
self.ch = ch |
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.downsample_time_stride4_levels = downsample_time_stride4_levels |
|
|
|
if len(self.downsample_time_stride4_levels) > 0: |
|
assert max(self.downsample_time_stride4_levels) < self.num_resolutions, ( |
|
"The level to perform downsample 4 operation need to be smaller than the total resolution number %s" |
|
% str(self.num_resolutions) |
|
) |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d( |
|
in_channels, self.ch, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
curr_res = resolution |
|
in_ch_mult = (1,) + tuple(ch_mult) |
|
self.in_ch_mult = in_ch_mult |
|
self.down = nn.ModuleList() |
|
for i_level in range(self.num_resolutions): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_in = ch * in_ch_mult[i_level] |
|
block_out = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks): |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(make_attn(block_in, attn_type=attn_type)) |
|
down = nn.Module() |
|
down.block = block |
|
down.attn = attn |
|
if i_level != self.num_resolutions - 1: |
|
if i_level in self.downsample_time_stride4_levels: |
|
down.downsample = DownsampleTimeStride4(block_in, resamp_with_conv) |
|
else: |
|
down.downsample = Downsample(block_in, resamp_with_conv) |
|
curr_res = curr_res // 2 |
|
self.down.append(down) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) |
|
self.mid.block_2 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d( |
|
block_in, |
|
2 * z_channels if double_z else z_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
def forward(self, x): |
|
|
|
temb = None |
|
|
|
hs = [self.conv_in(x)] |
|
for i_level in range(self.num_resolutions): |
|
for i_block in range(self.num_res_blocks): |
|
h = self.down[i_level].block[i_block](hs[-1], temb) |
|
if len(self.down[i_level].attn) > 0: |
|
h = self.down[i_level].attn[i_block](h) |
|
hs.append(h) |
|
if i_level != self.num_resolutions - 1: |
|
hs.append(self.down[i_level].downsample(hs[-1])) |
|
|
|
|
|
h = hs[-1] |
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
|
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
ch, |
|
out_ch, |
|
ch_mult=(1, 2, 4, 8), |
|
num_res_blocks, |
|
attn_resolutions, |
|
dropout=0.0, |
|
resamp_with_conv=True, |
|
in_channels, |
|
resolution, |
|
z_channels, |
|
give_pre_end=False, |
|
tanh_out=False, |
|
use_linear_attn=False, |
|
downsample_time_stride4_levels=[], |
|
attn_type="vanilla", |
|
**ignorekwargs, |
|
): |
|
super().__init__() |
|
if use_linear_attn: |
|
attn_type = "linear" |
|
self.ch = ch |
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.give_pre_end = give_pre_end |
|
self.tanh_out = tanh_out |
|
self.downsample_time_stride4_levels = downsample_time_stride4_levels |
|
|
|
if len(self.downsample_time_stride4_levels) > 0: |
|
assert max(self.downsample_time_stride4_levels) < self.num_resolutions, ( |
|
"The level to perform downsample 4 operation need to be smaller than the total resolution number %s" |
|
% str(self.num_resolutions) |
|
) |
|
|
|
|
|
in_ch_mult = (1,) + tuple(ch_mult) |
|
block_in = ch * ch_mult[self.num_resolutions - 1] |
|
curr_res = resolution // 2 ** (self.num_resolutions - 1) |
|
self.z_shape = (1, z_channels, curr_res, curr_res) |
|
|
|
|
|
|
|
|
|
self.conv_in = torch.nn.Conv2d( |
|
z_channels, block_in, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) |
|
self.mid.block_2 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
|
|
|
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks + 1): |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(make_attn(block_in, attn_type=attn_type)) |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
if i_level - 1 in self.downsample_time_stride4_levels: |
|
up.upsample = UpsampleTimeStride4(block_in, resamp_with_conv) |
|
else: |
|
up.upsample = Upsample(block_in, resamp_with_conv) |
|
curr_res = curr_res * 2 |
|
self.up.insert(0, up) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d( |
|
block_in, out_ch, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, z): |
|
|
|
self.last_z_shape = z.shape |
|
|
|
|
|
temb = None |
|
|
|
|
|
h = self.conv_in(z) |
|
|
|
|
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks + 1): |
|
h = self.up[i_level].block[i_block](h, temb) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block](h) |
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
|
|
|
|
if self.give_pre_end: |
|
return h |
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
if self.tanh_out: |
|
h = torch.tanh(h) |
|
return h |
|
|
|
|
|
class SimpleDecoder(nn.Module): |
|
def __init__(self, in_channels, out_channels, *args, **kwargs): |
|
super().__init__() |
|
self.model = nn.ModuleList( |
|
[ |
|
nn.Conv2d(in_channels, in_channels, 1), |
|
ResnetBlock( |
|
in_channels=in_channels, |
|
out_channels=2 * in_channels, |
|
temb_channels=0, |
|
dropout=0.0, |
|
), |
|
ResnetBlock( |
|
in_channels=2 * in_channels, |
|
out_channels=4 * in_channels, |
|
temb_channels=0, |
|
dropout=0.0, |
|
), |
|
ResnetBlock( |
|
in_channels=4 * in_channels, |
|
out_channels=2 * in_channels, |
|
temb_channels=0, |
|
dropout=0.0, |
|
), |
|
nn.Conv2d(2 * in_channels, in_channels, 1), |
|
Upsample(in_channels, with_conv=True), |
|
] |
|
) |
|
|
|
self.norm_out = Normalize(in_channels) |
|
self.conv_out = torch.nn.Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, x): |
|
for i, layer in enumerate(self.model): |
|
if i in [1, 2, 3]: |
|
x = layer(x, None) |
|
else: |
|
x = layer(x) |
|
|
|
h = self.norm_out(x) |
|
h = nonlinearity(h) |
|
x = self.conv_out(h) |
|
return x |
|
|
|
|
|
class UpsampleDecoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
ch, |
|
num_res_blocks, |
|
resolution, |
|
ch_mult=(2, 2), |
|
dropout=0.0, |
|
): |
|
super().__init__() |
|
|
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
block_in = in_channels |
|
curr_res = resolution // 2 ** (self.num_resolutions - 1) |
|
self.res_blocks = nn.ModuleList() |
|
self.upsample_blocks = nn.ModuleList() |
|
for i_level in range(self.num_resolutions): |
|
res_block = [] |
|
block_out = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks + 1): |
|
res_block.append( |
|
ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
) |
|
block_in = block_out |
|
self.res_blocks.append(nn.ModuleList(res_block)) |
|
if i_level != self.num_resolutions - 1: |
|
self.upsample_blocks.append(Upsample(block_in, True)) |
|
curr_res = curr_res * 2 |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d( |
|
block_in, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, x): |
|
|
|
h = x |
|
for k, i_level in enumerate(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks + 1): |
|
h = self.res_blocks[i_level][i_block](h, None) |
|
if i_level != self.num_resolutions - 1: |
|
h = self.upsample_blocks[k](h) |
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
class LatentRescaler(nn.Module): |
|
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2): |
|
super().__init__() |
|
|
|
self.factor = factor |
|
self.conv_in = nn.Conv2d( |
|
in_channels, mid_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
self.res_block1 = nn.ModuleList( |
|
[ |
|
ResnetBlock( |
|
in_channels=mid_channels, |
|
out_channels=mid_channels, |
|
temb_channels=0, |
|
dropout=0.0, |
|
) |
|
for _ in range(depth) |
|
] |
|
) |
|
self.attn = AttnBlock(mid_channels) |
|
self.res_block2 = nn.ModuleList( |
|
[ |
|
ResnetBlock( |
|
in_channels=mid_channels, |
|
out_channels=mid_channels, |
|
temb_channels=0, |
|
dropout=0.0, |
|
) |
|
for _ in range(depth) |
|
] |
|
) |
|
|
|
self.conv_out = nn.Conv2d( |
|
mid_channels, |
|
out_channels, |
|
kernel_size=1, |
|
) |
|
|
|
def forward(self, x): |
|
x = self.conv_in(x) |
|
for block in self.res_block1: |
|
x = block(x, None) |
|
x = torch.nn.functional.interpolate( |
|
x, |
|
size=( |
|
int(round(x.shape[2] * self.factor)), |
|
int(round(x.shape[3] * self.factor)), |
|
), |
|
) |
|
x = self.attn(x).contiguous() |
|
for block in self.res_block2: |
|
x = block(x, None) |
|
x = self.conv_out(x) |
|
return x |
|
|
|
|
|
class MergedRescaleEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
ch, |
|
resolution, |
|
out_ch, |
|
num_res_blocks, |
|
attn_resolutions, |
|
dropout=0.0, |
|
resamp_with_conv=True, |
|
ch_mult=(1, 2, 4, 8), |
|
rescale_factor=1.0, |
|
rescale_module_depth=1, |
|
): |
|
super().__init__() |
|
intermediate_chn = ch * ch_mult[-1] |
|
self.encoder = Encoder( |
|
in_channels=in_channels, |
|
num_res_blocks=num_res_blocks, |
|
ch=ch, |
|
ch_mult=ch_mult, |
|
z_channels=intermediate_chn, |
|
double_z=False, |
|
resolution=resolution, |
|
attn_resolutions=attn_resolutions, |
|
dropout=dropout, |
|
resamp_with_conv=resamp_with_conv, |
|
out_ch=None, |
|
) |
|
self.rescaler = LatentRescaler( |
|
factor=rescale_factor, |
|
in_channels=intermediate_chn, |
|
mid_channels=intermediate_chn, |
|
out_channels=out_ch, |
|
depth=rescale_module_depth, |
|
) |
|
|
|
def forward(self, x): |
|
x = self.encoder(x) |
|
x = self.rescaler(x) |
|
return x |
|
|
|
|
|
class MergedRescaleDecoder(nn.Module): |
|
def __init__( |
|
self, |
|
z_channels, |
|
out_ch, |
|
resolution, |
|
num_res_blocks, |
|
attn_resolutions, |
|
ch, |
|
ch_mult=(1, 2, 4, 8), |
|
dropout=0.0, |
|
resamp_with_conv=True, |
|
rescale_factor=1.0, |
|
rescale_module_depth=1, |
|
): |
|
super().__init__() |
|
tmp_chn = z_channels * ch_mult[-1] |
|
self.decoder = Decoder( |
|
out_ch=out_ch, |
|
z_channels=tmp_chn, |
|
attn_resolutions=attn_resolutions, |
|
dropout=dropout, |
|
resamp_with_conv=resamp_with_conv, |
|
in_channels=None, |
|
num_res_blocks=num_res_blocks, |
|
ch_mult=ch_mult, |
|
resolution=resolution, |
|
ch=ch, |
|
) |
|
self.rescaler = LatentRescaler( |
|
factor=rescale_factor, |
|
in_channels=z_channels, |
|
mid_channels=tmp_chn, |
|
out_channels=tmp_chn, |
|
depth=rescale_module_depth, |
|
) |
|
|
|
def forward(self, x): |
|
x = self.rescaler(x) |
|
x = self.decoder(x) |
|
return x |
|
|
|
|
|
class Upsampler(nn.Module): |
|
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2): |
|
super().__init__() |
|
assert out_size >= in_size |
|
num_blocks = int(np.log2(out_size // in_size)) + 1 |
|
factor_up = 1.0 + (out_size % in_size) |
|
print( |
|
f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}" |
|
) |
|
self.rescaler = LatentRescaler( |
|
factor=factor_up, |
|
in_channels=in_channels, |
|
mid_channels=2 * in_channels, |
|
out_channels=in_channels, |
|
) |
|
self.decoder = Decoder( |
|
out_ch=out_channels, |
|
resolution=out_size, |
|
z_channels=in_channels, |
|
num_res_blocks=2, |
|
attn_resolutions=[], |
|
in_channels=None, |
|
ch=in_channels, |
|
ch_mult=[ch_mult for _ in range(num_blocks)], |
|
) |
|
|
|
def forward(self, x): |
|
x = self.rescaler(x) |
|
x = self.decoder(x) |
|
return x |
|
|
|
|
|
class Resize(nn.Module): |
|
def __init__(self, in_channels=None, learned=False, mode="bilinear"): |
|
super().__init__() |
|
self.with_conv = learned |
|
self.mode = mode |
|
if self.with_conv: |
|
print( |
|
f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode" |
|
) |
|
raise NotImplementedError() |
|
assert in_channels is not None |
|
|
|
self.conv = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=4, stride=2, padding=1 |
|
) |
|
|
|
def forward(self, x, scale_factor=1.0): |
|
if scale_factor == 1.0: |
|
return x |
|
else: |
|
x = torch.nn.functional.interpolate( |
|
x, mode=self.mode, align_corners=False, scale_factor=scale_factor |
|
) |
|
return x |
|
|
|
|
|
class FirstStagePostProcessor(nn.Module): |
|
def __init__( |
|
self, |
|
ch_mult: list, |
|
in_channels, |
|
pretrained_model: nn.Module = None, |
|
reshape=False, |
|
n_channels=None, |
|
dropout=0.0, |
|
pretrained_config=None, |
|
): |
|
super().__init__() |
|
if pretrained_config is None: |
|
assert ( |
|
pretrained_model is not None |
|
), 'Either "pretrained_model" or "pretrained_config" must not be None' |
|
self.pretrained_model = pretrained_model |
|
else: |
|
assert ( |
|
pretrained_config is not None |
|
), 'Either "pretrained_model" or "pretrained_config" must not be None' |
|
self.instantiate_pretrained(pretrained_config) |
|
|
|
self.do_reshape = reshape |
|
|
|
if n_channels is None: |
|
n_channels = self.pretrained_model.encoder.ch |
|
|
|
self.proj_norm = Normalize(in_channels, num_groups=in_channels // 2) |
|
self.proj = nn.Conv2d( |
|
in_channels, n_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
blocks = [] |
|
downs = [] |
|
ch_in = n_channels |
|
for m in ch_mult: |
|
blocks.append( |
|
ResnetBlock( |
|
in_channels=ch_in, out_channels=m * n_channels, dropout=dropout |
|
) |
|
) |
|
ch_in = m * n_channels |
|
downs.append(Downsample(ch_in, with_conv=False)) |
|
|
|
self.model = nn.ModuleList(blocks) |
|
self.downsampler = nn.ModuleList(downs) |
|
|
|
def instantiate_pretrained(self, config): |
|
model = instantiate_from_config(config) |
|
self.pretrained_model = model.eval() |
|
|
|
for param in self.pretrained_model.parameters(): |
|
param.requires_grad = False |
|
|
|
@torch.no_grad() |
|
def encode_with_pretrained(self, x): |
|
c = self.pretrained_model.encode(x) |
|
if isinstance(c, DiagonalGaussianDistribution): |
|
c = c.mode() |
|
return c |
|
|
|
def forward(self, x): |
|
z_fs = self.encode_with_pretrained(x) |
|
z = self.proj_norm(z_fs) |
|
z = self.proj(z) |
|
z = nonlinearity(z) |
|
|
|
for submodel, downmodel in zip(self.model, self.downsampler): |
|
z = submodel(z, temb=None) |
|
z = downmodel(z) |
|
|
|
if self.do_reshape: |
|
z = rearrange(z, "b c h w -> b (h w) c") |
|
return z |
|
|