|
import hashlib |
|
import os |
|
import urllib |
|
import warnings |
|
|
|
from tqdm import tqdm |
|
|
|
_RN50 = dict( |
|
openai="https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", |
|
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt", |
|
cc12m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt", |
|
) |
|
|
|
_RN50_quickgelu = dict( |
|
openai="https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", |
|
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt", |
|
cc12m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt", |
|
) |
|
|
|
_RN101 = dict( |
|
openai="https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", |
|
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt", |
|
) |
|
|
|
_RN101_quickgelu = dict( |
|
openai="https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", |
|
yfcc15m="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt", |
|
) |
|
|
|
_RN50x4 = dict( |
|
openai="https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", |
|
) |
|
|
|
_RN50x16 = dict( |
|
openai="https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt", |
|
) |
|
|
|
_RN50x64 = dict( |
|
openai="https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt", |
|
) |
|
|
|
_VITB32 = dict( |
|
openai="https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", |
|
laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt", |
|
laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt", |
|
laion400m_avg="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_avg-8a00ab3c.pt", |
|
) |
|
|
|
_VITB32_quickgelu = dict( |
|
openai="https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", |
|
laion400m_e31="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt", |
|
laion400m_e32="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt", |
|
laion400m_avg="https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_avg-8a00ab3c.pt", |
|
) |
|
|
|
_VITB16 = dict( |
|
openai="https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", |
|
) |
|
|
|
_VITL14 = dict( |
|
openai="https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", |
|
) |
|
|
|
_PRETRAINED = { |
|
"RN50": _RN50, |
|
"RN50-quickgelu": _RN50_quickgelu, |
|
"RN101": _RN101, |
|
"RN101-quickgelu": _RN101_quickgelu, |
|
"RN50x4": _RN50x4, |
|
"RN50x16": _RN50x16, |
|
"ViT-B-32": _VITB32, |
|
"ViT-B-32-quickgelu": _VITB32_quickgelu, |
|
"ViT-B-16": _VITB16, |
|
"ViT-L-14": _VITL14, |
|
} |
|
|
|
|
|
def list_pretrained(as_str: bool = False): |
|
"""returns list of pretrained models |
|
Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True |
|
""" |
|
return [ |
|
":".join([k, t]) if as_str else (k, t) |
|
for k in _PRETRAINED.keys() |
|
for t in _PRETRAINED[k].keys() |
|
] |
|
|
|
|
|
def list_pretrained_tag_models(tag: str): |
|
"""return all models having the specified pretrain tag""" |
|
models = [] |
|
for k in _PRETRAINED.keys(): |
|
if tag in _PRETRAINED[k]: |
|
models.append(k) |
|
return models |
|
|
|
|
|
def list_pretrained_model_tags(model: str): |
|
"""return all pretrain tags for the specified model architecture""" |
|
tags = [] |
|
if model in _PRETRAINED: |
|
tags.extend(_PRETRAINED[model].keys()) |
|
return tags |
|
|
|
|
|
def get_pretrained_url(model: str, tag: str): |
|
if model not in _PRETRAINED: |
|
return "" |
|
model_pretrained = _PRETRAINED[model] |
|
if tag not in model_pretrained: |
|
return "" |
|
return model_pretrained[tag] |
|
|
|
|
|
def download_pretrained(url: str, root: str = os.path.expanduser("~/.cache/clip")): |
|
os.makedirs(root, exist_ok=True) |
|
filename = os.path.basename(url) |
|
|
|
if "openaipublic" in url: |
|
expected_sha256 = url.split("/")[-2] |
|
else: |
|
expected_sha256 = "" |
|
|
|
download_target = os.path.join(root, filename) |
|
|
|
if os.path.exists(download_target) and not os.path.isfile(download_target): |
|
raise RuntimeError(f"{download_target} exists and is not a regular file") |
|
|
|
if os.path.isfile(download_target): |
|
if expected_sha256: |
|
if ( |
|
hashlib.sha256(open(download_target, "rb").read()).hexdigest() |
|
== expected_sha256 |
|
): |
|
return download_target |
|
else: |
|
warnings.warn( |
|
f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" |
|
) |
|
else: |
|
return download_target |
|
|
|
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: |
|
with tqdm( |
|
total=int(source.info().get("Content-Length")), |
|
ncols=80, |
|
unit="iB", |
|
unit_scale=True, |
|
) as loop: |
|
while True: |
|
buffer = source.read(8192) |
|
if not buffer: |
|
break |
|
|
|
output.write(buffer) |
|
loop.update(len(buffer)) |
|
|
|
if ( |
|
expected_sha256 |
|
and hashlib.sha256(open(download_target, "rb").read()).hexdigest() |
|
!= expected_sha256 |
|
): |
|
raise RuntimeError( |
|
f"Model has been downloaded but the SHA256 checksum does not not match" |
|
) |
|
|
|
return download_target |
|
|