|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from itertools import repeat |
|
import collections.abc |
|
import math |
|
import warnings |
|
|
|
from torch.nn.init import _calculate_fan_in_and_fan_out |
|
import torch.utils.checkpoint as checkpoint |
|
|
|
import random |
|
|
|
from torchlibrosa.stft import Spectrogram, LogmelFilterBank |
|
from torchlibrosa.augmentation import SpecAugmentation |
|
|
|
from itertools import repeat |
|
from .utils import do_mixup, interpolate |
|
|
|
from .feature_fusion import iAFF, AFF, DAF |
|
|
|
|
|
def _ntuple(n): |
|
def parse(x): |
|
if isinstance(x, collections.abc.Iterable): |
|
return x |
|
return tuple(repeat(x, n)) |
|
|
|
return parse |
|
|
|
|
|
to_1tuple = _ntuple(1) |
|
to_2tuple = _ntuple(2) |
|
to_3tuple = _ntuple(3) |
|
to_4tuple = _ntuple(4) |
|
to_ntuple = _ntuple |
|
|
|
|
|
def drop_path(x, drop_prob: float = 0.0, training: bool = False): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, |
|
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... |
|
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for |
|
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use |
|
'survival rate' as the argument. |
|
""" |
|
if drop_prob == 0.0 or not training: |
|
return x |
|
keep_prob = 1 - drop_prob |
|
shape = (x.shape[0],) + (1,) * ( |
|
x.ndim - 1 |
|
) |
|
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) |
|
random_tensor.floor_() |
|
output = x.div(keep_prob) * random_tensor |
|
return output |
|
|
|
|
|
class DropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" |
|
|
|
def __init__(self, drop_prob=None): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, x): |
|
return drop_path(x, self.drop_prob, self.training) |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
"""2D Image to Patch Embedding""" |
|
|
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_size=16, |
|
in_chans=3, |
|
embed_dim=768, |
|
norm_layer=None, |
|
flatten=True, |
|
patch_stride=16, |
|
enable_fusion=False, |
|
fusion_type="None", |
|
): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
patch_stride = to_2tuple(patch_stride) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.patch_stride = patch_stride |
|
self.grid_size = ( |
|
img_size[0] // patch_stride[0], |
|
img_size[1] // patch_stride[1], |
|
) |
|
self.num_patches = self.grid_size[0] * self.grid_size[1] |
|
self.flatten = flatten |
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
self.enable_fusion = enable_fusion |
|
self.fusion_type = fusion_type |
|
|
|
padding = ( |
|
(patch_size[0] - patch_stride[0]) // 2, |
|
(patch_size[1] - patch_stride[1]) // 2, |
|
) |
|
|
|
if (self.enable_fusion) and (self.fusion_type == "channel_map"): |
|
self.proj = nn.Conv2d( |
|
in_chans * 4, |
|
embed_dim, |
|
kernel_size=patch_size, |
|
stride=patch_stride, |
|
padding=padding, |
|
) |
|
else: |
|
self.proj = nn.Conv2d( |
|
in_chans, |
|
embed_dim, |
|
kernel_size=patch_size, |
|
stride=patch_stride, |
|
padding=padding, |
|
) |
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() |
|
|
|
if (self.enable_fusion) and ( |
|
self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"] |
|
): |
|
self.mel_conv2d = nn.Conv2d( |
|
in_chans, |
|
embed_dim, |
|
kernel_size=(patch_size[0], patch_size[1] * 3), |
|
stride=(patch_stride[0], patch_stride[1] * 3), |
|
padding=padding, |
|
) |
|
if self.fusion_type == "daf_2d": |
|
self.fusion_model = DAF() |
|
elif self.fusion_type == "aff_2d": |
|
self.fusion_model = AFF(channels=embed_dim, type="2D") |
|
elif self.fusion_type == "iaff_2d": |
|
self.fusion_model = iAFF(channels=embed_dim, type="2D") |
|
|
|
def forward(self, x, longer_idx=None): |
|
if (self.enable_fusion) and ( |
|
self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"] |
|
): |
|
global_x = x[:, 0:1, :, :] |
|
|
|
|
|
B, C, H, W = global_x.shape |
|
assert ( |
|
H == self.img_size[0] and W == self.img_size[1] |
|
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." |
|
global_x = self.proj(global_x) |
|
TW = global_x.size(-1) |
|
if len(longer_idx) > 0: |
|
|
|
local_x = x[longer_idx, 1:, :, :].contiguous() |
|
B, C, H, W = local_x.shape |
|
local_x = local_x.view(B * C, 1, H, W) |
|
local_x = self.mel_conv2d(local_x) |
|
local_x = local_x.view( |
|
B, C, local_x.size(1), local_x.size(2), local_x.size(3) |
|
) |
|
local_x = local_x.permute((0, 2, 3, 1, 4)).contiguous().flatten(3) |
|
TB, TC, TH, _ = local_x.size() |
|
if local_x.size(-1) < TW: |
|
local_x = torch.cat( |
|
[ |
|
local_x, |
|
torch.zeros( |
|
(TB, TC, TH, TW - local_x.size(-1)), |
|
device=global_x.device, |
|
), |
|
], |
|
dim=-1, |
|
) |
|
else: |
|
local_x = local_x[:, :, :, :TW] |
|
|
|
global_x[longer_idx] = self.fusion_model(global_x[longer_idx], local_x) |
|
x = global_x |
|
else: |
|
B, C, H, W = x.shape |
|
assert ( |
|
H == self.img_size[0] and W == self.img_size[1] |
|
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." |
|
x = self.proj(x) |
|
|
|
if self.flatten: |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class Mlp(nn.Module): |
|
"""MLP as used in Vision Transformer, MLP-Mixer and related networks""" |
|
|
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
drop=0.0, |
|
): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
def _no_grad_trunc_normal_(tensor, mean, std, a, b): |
|
|
|
|
|
def norm_cdf(x): |
|
|
|
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 |
|
|
|
if (mean < a - 2 * std) or (mean > b + 2 * std): |
|
warnings.warn( |
|
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " |
|
"The distribution of values may be incorrect.", |
|
stacklevel=2, |
|
) |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
|
|
l = norm_cdf((a - mean) / std) |
|
u = norm_cdf((b - mean) / std) |
|
|
|
|
|
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
|
|
|
|
|
tensor.erfinv_() |
|
|
|
|
|
tensor.mul_(std * math.sqrt(2.0)) |
|
tensor.add_(mean) |
|
|
|
|
|
tensor.clamp_(min=a, max=b) |
|
return tensor |
|
|
|
|
|
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): |
|
|
|
r"""Fills the input Tensor with values drawn from a truncated |
|
normal distribution. The values are effectively drawn from the |
|
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` |
|
with values outside :math:`[a, b]` redrawn until they are within |
|
the bounds. The method used for generating the random values works |
|
best when :math:`a \leq \text{mean} \leq b`. |
|
Args: |
|
tensor: an n-dimensional `torch.Tensor` |
|
mean: the mean of the normal distribution |
|
std: the standard deviation of the normal distribution |
|
a: the minimum cutoff value |
|
b: the maximum cutoff value |
|
Examples: |
|
>>> w = torch.empty(3, 5) |
|
>>> nn.init.trunc_normal_(w) |
|
""" |
|
return _no_grad_trunc_normal_(tensor, mean, std, a, b) |
|
|
|
|
|
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): |
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) |
|
if mode == "fan_in": |
|
denom = fan_in |
|
elif mode == "fan_out": |
|
denom = fan_out |
|
elif mode == "fan_avg": |
|
denom = (fan_in + fan_out) / 2 |
|
|
|
variance = scale / denom |
|
|
|
if distribution == "truncated_normal": |
|
|
|
trunc_normal_(tensor, std=math.sqrt(variance) / 0.87962566103423978) |
|
elif distribution == "normal": |
|
tensor.normal_(std=math.sqrt(variance)) |
|
elif distribution == "uniform": |
|
bound = math.sqrt(3 * variance) |
|
tensor.uniform_(-bound, bound) |
|
else: |
|
raise ValueError(f"invalid distribution {distribution}") |
|
|
|
|
|
def lecun_normal_(tensor): |
|
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") |
|
|
|
|
|
def window_partition(x, window_size): |
|
""" |
|
Args: |
|
x: (B, H, W, C) |
|
window_size (int): window size |
|
Returns: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
""" |
|
B, H, W, C = x.shape |
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) |
|
windows = ( |
|
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) |
|
) |
|
return windows |
|
|
|
|
|
def window_reverse(windows, window_size, H, W): |
|
""" |
|
Args: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
window_size (int): Window size |
|
H (int): Height of image |
|
W (int): Width of image |
|
Returns: |
|
x: (B, H, W, C) |
|
""" |
|
B = int(windows.shape[0] / (H * W / window_size / window_size)) |
|
x = windows.view( |
|
B, H // window_size, W // window_size, window_size, window_size, -1 |
|
) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) |
|
return x |
|
|
|
|
|
class WindowAttention(nn.Module): |
|
r"""Window based multi-head self attention (W-MSA) module with relative position bias. |
|
It supports both of shifted and non-shifted window. |
|
Args: |
|
dim (int): Number of input channels. |
|
window_size (tuple[int]): The height and width of the window. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
window_size, |
|
num_heads, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
attn_drop=0.0, |
|
proj_drop=0.0, |
|
): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.window_size = window_size |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
|
|
self.relative_position_bias_table = nn.Parameter( |
|
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads) |
|
) |
|
|
|
|
|
coords_h = torch.arange(self.window_size[0]) |
|
coords_w = torch.arange(self.window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = ( |
|
coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
) |
|
relative_coords = relative_coords.permute( |
|
1, 2, 0 |
|
).contiguous() |
|
relative_coords[:, :, 0] += self.window_size[0] - 1 |
|
relative_coords[:, :, 1] += self.window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 |
|
relative_position_index = relative_coords.sum(-1) |
|
self.register_buffer("relative_position_index", relative_position_index) |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
trunc_normal_(self.relative_position_bias_table, std=0.02) |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, x, mask=None): |
|
""" |
|
Args: |
|
x: input features with shape of (num_windows*B, N, C) |
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None |
|
""" |
|
B_, N, C = x.shape |
|
qkv = ( |
|
self.qkv(x) |
|
.reshape(B_, N, 3, self.num_heads, C // self.num_heads) |
|
.permute(2, 0, 3, 1, 4) |
|
) |
|
q, k, v = ( |
|
qkv[0], |
|
qkv[1], |
|
qkv[2], |
|
) |
|
|
|
q = q * self.scale |
|
attn = q @ k.transpose(-2, -1) |
|
|
|
relative_position_bias = self.relative_position_bias_table[ |
|
self.relative_position_index.view(-1) |
|
].view( |
|
self.window_size[0] * self.window_size[1], |
|
self.window_size[0] * self.window_size[1], |
|
-1, |
|
) |
|
relative_position_bias = relative_position_bias.permute( |
|
2, 0, 1 |
|
).contiguous() |
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
if mask is not None: |
|
nW = mask.shape[0] |
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze( |
|
1 |
|
).unsqueeze(0) |
|
attn = attn.view(-1, self.num_heads, N, N) |
|
attn = self.softmax(attn) |
|
else: |
|
attn = self.softmax(attn) |
|
|
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x, attn |
|
|
|
def extra_repr(self): |
|
return f"dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}" |
|
|
|
|
|
|
|
class SwinTransformerBlock(nn.Module): |
|
r"""Swin Transformer Block. |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resulotion. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Window size. |
|
shift_size (int): Shift size for SW-MSA. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
num_heads, |
|
window_size=7, |
|
shift_size=0, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
drop_path=0.0, |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
norm_before_mlp="ln", |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.num_heads = num_heads |
|
self.window_size = window_size |
|
self.shift_size = shift_size |
|
self.mlp_ratio = mlp_ratio |
|
self.norm_before_mlp = norm_before_mlp |
|
if min(self.input_resolution) <= self.window_size: |
|
|
|
self.shift_size = 0 |
|
self.window_size = min(self.input_resolution) |
|
assert ( |
|
0 <= self.shift_size < self.window_size |
|
), "shift_size must in 0-window_size" |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.attn = WindowAttention( |
|
dim, |
|
window_size=to_2tuple(self.window_size), |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
attn_drop=attn_drop, |
|
proj_drop=drop, |
|
) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
if self.norm_before_mlp == "ln": |
|
self.norm2 = nn.LayerNorm(dim) |
|
elif self.norm_before_mlp == "bn": |
|
self.norm2 = lambda x: nn.BatchNorm1d(dim)(x.transpose(1, 2)).transpose( |
|
1, 2 |
|
) |
|
else: |
|
raise NotImplementedError |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=drop, |
|
) |
|
|
|
if self.shift_size > 0: |
|
|
|
H, W = self.input_resolution |
|
img_mask = torch.zeros((1, H, W, 1)) |
|
h_slices = ( |
|
slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None), |
|
) |
|
w_slices = ( |
|
slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None), |
|
) |
|
cnt = 0 |
|
for h in h_slices: |
|
for w in w_slices: |
|
img_mask[:, h, w, :] = cnt |
|
cnt += 1 |
|
|
|
mask_windows = window_partition( |
|
img_mask, self.window_size |
|
) |
|
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) |
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
|
attn_mask = attn_mask.masked_fill( |
|
attn_mask != 0, float(-100.0) |
|
).masked_fill(attn_mask == 0, float(0.0)) |
|
else: |
|
attn_mask = None |
|
|
|
self.register_buffer("attn_mask", attn_mask) |
|
|
|
def forward(self, x): |
|
|
|
H, W = self.input_resolution |
|
|
|
|
|
|
|
B, L, C = x.shape |
|
|
|
|
|
shortcut = x |
|
x = self.norm1(x) |
|
x = x.view(B, H, W, C) |
|
|
|
|
|
if self.shift_size > 0: |
|
shifted_x = torch.roll( |
|
x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2) |
|
) |
|
else: |
|
shifted_x = x |
|
|
|
|
|
x_windows = window_partition( |
|
shifted_x, self.window_size |
|
) |
|
x_windows = x_windows.view( |
|
-1, self.window_size * self.window_size, C |
|
) |
|
|
|
|
|
attn_windows, attn = self.attn( |
|
x_windows, mask=self.attn_mask |
|
) |
|
|
|
|
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) |
|
shifted_x = window_reverse(attn_windows, self.window_size, H, W) |
|
|
|
|
|
if self.shift_size > 0: |
|
x = torch.roll( |
|
shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2) |
|
) |
|
else: |
|
x = shifted_x |
|
x = x.view(B, H * W, C) |
|
|
|
|
|
x = shortcut + self.drop_path(x) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
|
|
return x, attn |
|
|
|
def extra_repr(self): |
|
return ( |
|
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " |
|
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" |
|
) |
|
|
|
|
|
class PatchMerging(nn.Module): |
|
r"""Patch Merging Layer. |
|
Args: |
|
input_resolution (tuple[int]): Resolution of input feature. |
|
dim (int): Number of input channels. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
|
|
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.input_resolution = input_resolution |
|
self.dim = dim |
|
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) |
|
self.norm = norm_layer(4 * dim) |
|
|
|
def forward(self, x): |
|
""" |
|
x: B, H*W, C |
|
""" |
|
H, W = self.input_resolution |
|
B, L, C = x.shape |
|
assert L == H * W, "input feature has wrong size" |
|
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." |
|
|
|
x = x.view(B, H, W, C) |
|
|
|
x0 = x[:, 0::2, 0::2, :] |
|
x1 = x[:, 1::2, 0::2, :] |
|
x2 = x[:, 0::2, 1::2, :] |
|
x3 = x[:, 1::2, 1::2, :] |
|
x = torch.cat([x0, x1, x2, x3], -1) |
|
x = x.view(B, -1, 4 * C) |
|
|
|
x = self.norm(x) |
|
x = self.reduction(x) |
|
|
|
return x |
|
|
|
def extra_repr(self): |
|
return f"input_resolution={self.input_resolution}, dim={self.dim}" |
|
|
|
|
|
class BasicLayer(nn.Module): |
|
"""A basic Swin Transformer layer for one stage. |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resolution. |
|
depth (int): Number of blocks. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Local window size. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
depth, |
|
num_heads, |
|
window_size, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
drop_path=0.0, |
|
norm_layer=nn.LayerNorm, |
|
downsample=None, |
|
use_checkpoint=False, |
|
norm_before_mlp="ln", |
|
): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.depth = depth |
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
self.blocks = nn.ModuleList( |
|
[ |
|
SwinTransformerBlock( |
|
dim=dim, |
|
input_resolution=input_resolution, |
|
num_heads=num_heads, |
|
window_size=window_size, |
|
shift_size=0 if (i % 2 == 0) else window_size // 2, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop, |
|
attn_drop=attn_drop, |
|
drop_path=drop_path[i] |
|
if isinstance(drop_path, list) |
|
else drop_path, |
|
norm_layer=norm_layer, |
|
norm_before_mlp=norm_before_mlp, |
|
) |
|
for i in range(depth) |
|
] |
|
) |
|
|
|
|
|
if downsample is not None: |
|
self.downsample = downsample( |
|
input_resolution, dim=dim, norm_layer=norm_layer |
|
) |
|
else: |
|
self.downsample = None |
|
|
|
def forward(self, x): |
|
attns = [] |
|
for blk in self.blocks: |
|
if self.use_checkpoint: |
|
x = checkpoint.checkpoint(blk, x) |
|
else: |
|
x, attn = blk(x) |
|
if not self.training: |
|
attns.append(attn.unsqueeze(0)) |
|
if self.downsample is not None: |
|
x = self.downsample(x) |
|
if not self.training: |
|
attn = torch.cat(attns, dim=0) |
|
attn = torch.mean(attn, dim=0) |
|
return x, attn |
|
|
|
def extra_repr(self): |
|
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" |
|
|
|
|
|
|
|
class HTSAT_Swin_Transformer(nn.Module): |
|
r"""HTSAT based on the Swin Transformer |
|
Args: |
|
spec_size (int | tuple(int)): Input Spectrogram size. Default 256 |
|
patch_size (int | tuple(int)): Patch size. Default: 4 |
|
path_stride (iot | tuple(int)): Patch Stride for Frequency and Time Axis. Default: 4 |
|
in_chans (int): Number of input image channels. Default: 1 (mono) |
|
num_classes (int): Number of classes for classification head. Default: 527 |
|
embed_dim (int): Patch embedding dimension. Default: 96 |
|
depths (tuple(int)): Depth of each HTSAT-Swin Transformer layer. |
|
num_heads (tuple(int)): Number of attention heads in different layers. |
|
window_size (int): Window size. Default: 8 |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None |
|
drop_rate (float): Dropout rate. Default: 0 |
|
attn_drop_rate (float): Attention dropout rate. Default: 0 |
|
drop_path_rate (float): Stochastic depth rate. Default: 0.1 |
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. |
|
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False |
|
patch_norm (bool): If True, add normalization after patch embedding. Default: True |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False |
|
config (module): The configuration Module from config.py |
|
""" |
|
|
|
def __init__( |
|
self, |
|
spec_size=256, |
|
patch_size=4, |
|
patch_stride=(4, 4), |
|
in_chans=1, |
|
num_classes=527, |
|
embed_dim=96, |
|
depths=[2, 2, 6, 2], |
|
num_heads=[4, 8, 16, 32], |
|
window_size=8, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop_rate=0.0, |
|
attn_drop_rate=0.0, |
|
drop_path_rate=0.1, |
|
norm_layer=nn.LayerNorm, |
|
ape=False, |
|
patch_norm=True, |
|
use_checkpoint=False, |
|
norm_before_mlp="ln", |
|
config=None, |
|
enable_fusion=False, |
|
fusion_type="None", |
|
**kwargs, |
|
): |
|
super(HTSAT_Swin_Transformer, self).__init__() |
|
|
|
self.config = config |
|
self.spec_size = spec_size |
|
self.patch_stride = patch_stride |
|
self.patch_size = patch_size |
|
self.window_size = window_size |
|
self.embed_dim = embed_dim |
|
self.depths = depths |
|
self.ape = ape |
|
self.in_chans = in_chans |
|
self.num_classes = num_classes |
|
self.num_heads = num_heads |
|
self.num_layers = len(self.depths) |
|
self.num_features = int(self.embed_dim * 2 ** (self.num_layers - 1)) |
|
|
|
self.drop_rate = drop_rate |
|
self.attn_drop_rate = attn_drop_rate |
|
self.drop_path_rate = drop_path_rate |
|
|
|
self.qkv_bias = qkv_bias |
|
self.qk_scale = None |
|
|
|
self.patch_norm = patch_norm |
|
self.norm_layer = norm_layer if self.patch_norm else None |
|
self.norm_before_mlp = norm_before_mlp |
|
self.mlp_ratio = mlp_ratio |
|
|
|
self.use_checkpoint = use_checkpoint |
|
|
|
self.enable_fusion = enable_fusion |
|
self.fusion_type = fusion_type |
|
|
|
|
|
self.freq_ratio = self.spec_size // self.config.mel_bins |
|
window = "hann" |
|
center = True |
|
pad_mode = "reflect" |
|
ref = 1.0 |
|
amin = 1e-10 |
|
top_db = None |
|
self.interpolate_ratio = 32 |
|
|
|
self.spectrogram_extractor = Spectrogram( |
|
n_fft=config.window_size, |
|
hop_length=config.hop_size, |
|
win_length=config.window_size, |
|
window=window, |
|
center=center, |
|
pad_mode=pad_mode, |
|
freeze_parameters=True, |
|
) |
|
|
|
self.logmel_extractor = LogmelFilterBank( |
|
sr=config.sample_rate, |
|
n_fft=config.window_size, |
|
n_mels=config.mel_bins, |
|
fmin=config.fmin, |
|
fmax=config.fmax, |
|
ref=ref, |
|
amin=amin, |
|
top_db=top_db, |
|
freeze_parameters=True, |
|
) |
|
|
|
self.spec_augmenter = SpecAugmentation( |
|
time_drop_width=64, |
|
time_stripes_num=2, |
|
freq_drop_width=8, |
|
freq_stripes_num=2, |
|
) |
|
self.bn0 = nn.BatchNorm2d(self.config.mel_bins) |
|
|
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=self.spec_size, |
|
patch_size=self.patch_size, |
|
in_chans=self.in_chans, |
|
embed_dim=self.embed_dim, |
|
norm_layer=self.norm_layer, |
|
patch_stride=patch_stride, |
|
enable_fusion=self.enable_fusion, |
|
fusion_type=self.fusion_type, |
|
) |
|
|
|
num_patches = self.patch_embed.num_patches |
|
patches_resolution = self.patch_embed.grid_size |
|
self.patches_resolution = patches_resolution |
|
|
|
|
|
if self.ape: |
|
self.absolute_pos_embed = nn.Parameter( |
|
torch.zeros(1, num_patches, self.embed_dim) |
|
) |
|
trunc_normal_(self.absolute_pos_embed, std=0.02) |
|
|
|
self.pos_drop = nn.Dropout(p=self.drop_rate) |
|
|
|
|
|
dpr = [ |
|
x.item() for x in torch.linspace(0, self.drop_path_rate, sum(self.depths)) |
|
] |
|
|
|
|
|
self.layers = nn.ModuleList() |
|
for i_layer in range(self.num_layers): |
|
layer = BasicLayer( |
|
dim=int(self.embed_dim * 2**i_layer), |
|
input_resolution=( |
|
patches_resolution[0] // (2**i_layer), |
|
patches_resolution[1] // (2**i_layer), |
|
), |
|
depth=self.depths[i_layer], |
|
num_heads=self.num_heads[i_layer], |
|
window_size=self.window_size, |
|
mlp_ratio=self.mlp_ratio, |
|
qkv_bias=self.qkv_bias, |
|
qk_scale=self.qk_scale, |
|
drop=self.drop_rate, |
|
attn_drop=self.attn_drop_rate, |
|
drop_path=dpr[ |
|
sum(self.depths[:i_layer]) : sum(self.depths[: i_layer + 1]) |
|
], |
|
norm_layer=self.norm_layer, |
|
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, |
|
use_checkpoint=use_checkpoint, |
|
norm_before_mlp=self.norm_before_mlp, |
|
) |
|
self.layers.append(layer) |
|
|
|
self.norm = self.norm_layer(self.num_features) |
|
self.avgpool = nn.AdaptiveAvgPool1d(1) |
|
self.maxpool = nn.AdaptiveMaxPool1d(1) |
|
|
|
SF = ( |
|
self.spec_size |
|
// (2 ** (len(self.depths) - 1)) |
|
// self.patch_stride[0] |
|
// self.freq_ratio |
|
) |
|
self.tscam_conv = nn.Conv2d( |
|
in_channels=self.num_features, |
|
out_channels=self.num_classes, |
|
kernel_size=(SF, 3), |
|
padding=(0, 1), |
|
) |
|
self.head = nn.Linear(num_classes, num_classes) |
|
|
|
if (self.enable_fusion) and ( |
|
self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"] |
|
): |
|
self.mel_conv1d = nn.Sequential( |
|
nn.Conv1d(64, 64, kernel_size=5, stride=3, padding=2), |
|
nn.BatchNorm1d(64), |
|
) |
|
if self.fusion_type == "daf_1d": |
|
self.fusion_model = DAF() |
|
elif self.fusion_type == "aff_1d": |
|
self.fusion_model = AFF(channels=64, type="1D") |
|
elif self.fusion_type == "iaff_1d": |
|
self.fusion_model = iAFF(channels=64, type="1D") |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {"absolute_pos_embed"} |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay_keywords(self): |
|
return {"relative_position_bias_table"} |
|
|
|
def forward_features(self, x, longer_idx=None): |
|
|
|
|
|
frames_num = x.shape[2] |
|
x = self.patch_embed(x, longer_idx=longer_idx) |
|
if self.ape: |
|
x = x + self.absolute_pos_embed |
|
x = self.pos_drop(x) |
|
for i, layer in enumerate(self.layers): |
|
x, attn = layer(x) |
|
|
|
x = self.norm(x) |
|
B, N, C = x.shape |
|
SF = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0] |
|
ST = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1] |
|
x = x.permute(0, 2, 1).contiguous().reshape(B, C, SF, ST) |
|
B, C, F, T = x.shape |
|
|
|
c_freq_bin = F // self.freq_ratio |
|
x = x.reshape(B, C, F // c_freq_bin, c_freq_bin, T) |
|
x = x.permute(0, 1, 3, 2, 4).contiguous().reshape(B, C, c_freq_bin, -1) |
|
|
|
fine_grained_latent_output = torch.mean(x, dim=2) |
|
fine_grained_latent_output = interpolate( |
|
fine_grained_latent_output.permute(0, 2, 1).contiguous(), |
|
8 * self.patch_stride[1], |
|
) |
|
|
|
latent_output = self.avgpool(torch.flatten(x, 2)) |
|
latent_output = torch.flatten(latent_output, 1) |
|
|
|
|
|
|
|
x = self.tscam_conv(x) |
|
x = torch.flatten(x, 2) |
|
|
|
fpx = interpolate( |
|
torch.sigmoid(x).permute(0, 2, 1).contiguous(), 8 * self.patch_stride[1] |
|
) |
|
|
|
x = self.avgpool(x) |
|
x = torch.flatten(x, 1) |
|
|
|
output_dict = { |
|
"framewise_output": fpx, |
|
"clipwise_output": torch.sigmoid(x), |
|
"fine_grained_embedding": fine_grained_latent_output, |
|
"embedding": latent_output, |
|
} |
|
|
|
return output_dict |
|
|
|
def crop_wav(self, x, crop_size, spe_pos=None): |
|
time_steps = x.shape[2] |
|
tx = torch.zeros(x.shape[0], x.shape[1], crop_size, x.shape[3]).to(x.device) |
|
for i in range(len(x)): |
|
if spe_pos is None: |
|
crop_pos = random.randint(0, time_steps - crop_size - 1) |
|
else: |
|
crop_pos = spe_pos |
|
tx[i][0] = x[i, 0, crop_pos : crop_pos + crop_size, :] |
|
return tx |
|
|
|
|
|
def reshape_wav2img(self, x): |
|
B, C, T, F = x.shape |
|
target_T = int(self.spec_size * self.freq_ratio) |
|
target_F = self.spec_size // self.freq_ratio |
|
assert ( |
|
T <= target_T and F <= target_F |
|
), "the wav size should less than or equal to the swin input size" |
|
|
|
if T < target_T: |
|
x = nn.functional.interpolate( |
|
x, (target_T, x.shape[3]), mode="bicubic", align_corners=True |
|
) |
|
if F < target_F: |
|
x = nn.functional.interpolate( |
|
x, (x.shape[2], target_F), mode="bicubic", align_corners=True |
|
) |
|
x = x.permute(0, 1, 3, 2).contiguous() |
|
x = x.reshape( |
|
x.shape[0], |
|
x.shape[1], |
|
x.shape[2], |
|
self.freq_ratio, |
|
x.shape[3] // self.freq_ratio, |
|
) |
|
|
|
x = x.permute(0, 1, 3, 2, 4).contiguous() |
|
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3], x.shape[4]) |
|
return x |
|
|
|
|
|
def repeat_wat2img(self, x, cur_pos): |
|
B, C, T, F = x.shape |
|
target_T = int(self.spec_size * self.freq_ratio) |
|
target_F = self.spec_size // self.freq_ratio |
|
assert ( |
|
T <= target_T and F <= target_F |
|
), "the wav size should less than or equal to the swin input size" |
|
|
|
if T < target_T: |
|
x = nn.functional.interpolate( |
|
x, (target_T, x.shape[3]), mode="bicubic", align_corners=True |
|
) |
|
if F < target_F: |
|
x = nn.functional.interpolate( |
|
x, (x.shape[2], target_F), mode="bicubic", align_corners=True |
|
) |
|
x = x.permute(0, 1, 3, 2).contiguous() |
|
x = x[:, :, :, cur_pos : cur_pos + self.spec_size] |
|
x = x.repeat(repeats=(1, 1, 4, 1)) |
|
return x |
|
|
|
def forward( |
|
self, x: torch.Tensor, mixup_lambda=None, infer_mode=False, device=None |
|
): |
|
|
|
if self.enable_fusion and x["longer"].sum() == 0: |
|
|
|
x["longer"][torch.randint(0, x["longer"].shape[0], (1,))] = True |
|
|
|
if not self.enable_fusion: |
|
x = x["waveform"].to(device=device, non_blocking=True) |
|
x = self.spectrogram_extractor(x) |
|
x = self.logmel_extractor(x) |
|
x = x.transpose(1, 3) |
|
x = self.bn0(x) |
|
x = x.transpose(1, 3) |
|
if self.training: |
|
x = self.spec_augmenter(x) |
|
|
|
if self.training and mixup_lambda is not None: |
|
x = do_mixup(x, mixup_lambda) |
|
|
|
x = self.reshape_wav2img(x) |
|
output_dict = self.forward_features(x) |
|
else: |
|
longer_list = x["longer"].to(device=device, non_blocking=True) |
|
x = x["mel_fusion"].to(device=device, non_blocking=True) |
|
x = x.transpose(1, 3) |
|
x = self.bn0(x) |
|
x = x.transpose(1, 3) |
|
longer_list_idx = torch.where(longer_list)[0] |
|
if self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"]: |
|
new_x = x[:, 0:1, :, :].clone().contiguous() |
|
if len(longer_list_idx) > 0: |
|
|
|
fusion_x_local = x[longer_list_idx, 1:, :, :].clone().contiguous() |
|
FB, FC, FT, FF = fusion_x_local.size() |
|
fusion_x_local = fusion_x_local.view(FB * FC, FT, FF) |
|
fusion_x_local = torch.permute( |
|
fusion_x_local, (0, 2, 1) |
|
).contiguous() |
|
fusion_x_local = self.mel_conv1d(fusion_x_local) |
|
fusion_x_local = fusion_x_local.view( |
|
FB, FC, FF, fusion_x_local.size(-1) |
|
) |
|
fusion_x_local = ( |
|
torch.permute(fusion_x_local, (0, 2, 1, 3)) |
|
.contiguous() |
|
.flatten(2) |
|
) |
|
if fusion_x_local.size(-1) < FT: |
|
fusion_x_local = torch.cat( |
|
[ |
|
fusion_x_local, |
|
torch.zeros( |
|
(FB, FF, FT - fusion_x_local.size(-1)), |
|
device=device, |
|
), |
|
], |
|
dim=-1, |
|
) |
|
else: |
|
fusion_x_local = fusion_x_local[:, :, :FT] |
|
|
|
new_x = new_x.squeeze(1).permute((0, 2, 1)).contiguous() |
|
new_x[longer_list_idx] = self.fusion_model( |
|
new_x[longer_list_idx], fusion_x_local |
|
) |
|
x = new_x.permute((0, 2, 1)).contiguous()[:, None, :, :] |
|
else: |
|
x = new_x |
|
|
|
elif self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d", "channel_map"]: |
|
x = x |
|
|
|
if self.training: |
|
x = self.spec_augmenter(x) |
|
if self.training and mixup_lambda is not None: |
|
x = do_mixup(x, mixup_lambda) |
|
|
|
x = self.reshape_wav2img(x) |
|
output_dict = self.forward_features(x, longer_idx=longer_list_idx) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return output_dict |
|
|
|
|
|
def create_htsat_model(audio_cfg, enable_fusion=False, fusion_type="None"): |
|
try: |
|
|
|
assert audio_cfg.model_name in [ |
|
"tiny", |
|
"base", |
|
"large", |
|
], "model name for HTS-AT is wrong!" |
|
if audio_cfg.model_name == "tiny": |
|
model = HTSAT_Swin_Transformer( |
|
spec_size=256, |
|
patch_size=4, |
|
patch_stride=(4, 4), |
|
num_classes=audio_cfg.class_num, |
|
embed_dim=96, |
|
depths=[2, 2, 6, 2], |
|
num_heads=[4, 8, 16, 32], |
|
window_size=8, |
|
config=audio_cfg, |
|
enable_fusion=enable_fusion, |
|
fusion_type=fusion_type, |
|
) |
|
elif audio_cfg.model_name == "base": |
|
model = HTSAT_Swin_Transformer( |
|
spec_size=256, |
|
patch_size=4, |
|
patch_stride=(4, 4), |
|
num_classes=audio_cfg.class_num, |
|
embed_dim=128, |
|
depths=[2, 2, 12, 2], |
|
num_heads=[4, 8, 16, 32], |
|
window_size=8, |
|
config=audio_cfg, |
|
enable_fusion=enable_fusion, |
|
fusion_type=fusion_type, |
|
) |
|
elif audio_cfg.model_name == "large": |
|
model = HTSAT_Swin_Transformer( |
|
spec_size=256, |
|
patch_size=4, |
|
patch_stride=(4, 4), |
|
num_classes=audio_cfg.class_num, |
|
embed_dim=256, |
|
depths=[2, 2, 12, 2], |
|
num_heads=[4, 8, 16, 32], |
|
window_size=8, |
|
config=audio_cfg, |
|
enable_fusion=enable_fusion, |
|
fusion_type=fusion_type, |
|
) |
|
|
|
return model |
|
except: |
|
raise RuntimeError( |
|
f"Import Model for {audio_cfg.model_name} not found, or the audio cfg parameters are not enough." |
|
) |
|
|