Spaces:
Sleeping
Sleeping
import torch | |
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification | |
import gradio as gr | |
# モデルとトークナイザーのロード | |
model_name = "kix-intl/elon-musk-detector" # あなたのモデル名に置き換えてください | |
tokenizer = DistilBertTokenizer.from_pretrained(model_name) | |
model = DistilBertForSequenceClassification.from_pretrained(model_name) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
def classify_tweet(tweet): | |
inputs = tokenizer(tweet, return_tensors="pt", truncation=True, padding=True, max_length=128).to(device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
probabilities = torch.softmax(outputs.logits, dim=1) | |
prediction = torch.argmax(probabilities, dim=1).item() | |
confidence = probabilities[0][prediction].item() | |
if prediction == 1: | |
return f"Elon Musk (Confidence: {confidence:.2f})" | |
else: | |
return f"Not Elon Musk (Confidence: {confidence:.2f})" | |
# Gradioインターフェースの作成 | |
iface = gr.Interface( | |
fn=classify_tweet, | |
inputs=gr.Textbox(lines=2, placeholder="Enter a tweet here..."), | |
outputs=gr.Textbox(), | |
title="Elon Musk Tweet Classifier", | |
description="This model classifies whether a given tweet is likely to be written by Elon Musk or not.", | |
examples=[ | |
["Tesla's new model is amazing!"], | |
["Just had a great coffee at my favorite local café."], | |
["Sending astronauts to Mars is the next big challenge for humanity."] | |
] | |
) | |
# Hugging Faceにデプロイする場合は、以下の行のコメントを解除してください | |
iface.launch() |