Spaces:
Paused
Paused
Dean
commited on
Commit
โข
9cd8f4a
1
Parent(s):
cdbc70e
Transition to MLWorkspace docker and setup makefile with environment commands
Browse files- .gitignore +5 -0
- Dockerfile +0 -9
- Makefile +33 -0
- Notebooks/SavtaDepth_sanity_check.ipynb +0 -0
- README.md +31 -11
- requirements.txt +1 -0
- run_dev_env.sh +7 -10
- src/code/__pycache__/make_dataset.cpython-37.pyc +0 -0
- src/code/make_dataset.py +1 -0
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.vscode/
|
2 |
+
.DS_Store
|
3 |
+
.idea/
|
4 |
+
.ipynb_checkpoints/
|
5 |
+
.workspace/
|
Dockerfile
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
FROM pytorch/pytorch
|
2 |
-
|
3 |
-
RUN apt-get update && apt-get install -y software-properties-common && apt-get update
|
4 |
-
RUN add-apt-repository -y ppa:git-core/ppa && apt-get update && apt-get install -y git libglib2.0-dev
|
5 |
-
|
6 |
-
COPY requirements.txt ./
|
7 |
-
RUN pip install -r requirements.txt
|
8 |
-
|
9 |
-
RUN pip install jupyterlab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Makefile
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#################################################################################
|
2 |
+
# GLOBALS #
|
3 |
+
#################################################################################
|
4 |
+
|
5 |
+
PROJECT_DIR := $(shell dirname $(realpath $(lastword $(MAKEFILE_LIST))))
|
6 |
+
PROJECT_NAME = savta_depth
|
7 |
+
PYTHON_INTERPRETER = python3
|
8 |
+
|
9 |
+
ifeq (,$(shell which conda))
|
10 |
+
HAS_CONDA=False
|
11 |
+
else
|
12 |
+
HAS_CONDA=True
|
13 |
+
endif
|
14 |
+
|
15 |
+
#################################################################################
|
16 |
+
# COMMANDS #
|
17 |
+
#################################################################################
|
18 |
+
|
19 |
+
env:
|
20 |
+
ifeq (True,$(HAS_CONDA))
|
21 |
+
@echo ">>> Detected conda, creating conda environment."
|
22 |
+
conda create --name $(PROJECT_NAME) python=3
|
23 |
+
@echo ">>> New conda env created. Activate with:\nconda activate $(PROJECT_NAME)"
|
24 |
+
else
|
25 |
+
@echo ">>> No conda detected, creating venv environment."
|
26 |
+
$(PYTHON_INTERPRETER) -m venv env
|
27 |
+
@echo ">>> New virtual env created. Activate with:\nsource env/bin/activate ."
|
28 |
+
endif
|
29 |
+
|
30 |
+
requirements:
|
31 |
+
@echo ">>> Installing requirements. Make sure your virtual environment is activated."
|
32 |
+
$(PYTHON_INTERPRETER) -m pip install -U pip setuptools wheel
|
33 |
+
$(PYTHON_INTERPRETER) -m pip install -r requirements.txt
|
Notebooks/SavtaDepth_sanity_check.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
README.md
CHANGED
@@ -14,20 +14,40 @@ If you'd like to take part, please follow the guide.
|
|
14 |
* Next, clone the repository you just forked by typing the following command in your terminal:
|
15 |
```bash
|
16 |
$ git clone https://dagshub.com/<your-dagshub-username>/SavtaDepth.git
|
17 |
-
$ dvc checkout #use this to get the data, models etc
|
18 |
```
|
19 |
-
* To get your environment up and running docker is the best way to go.
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
```bash
|
24 |
-
$
|
25 |
-
$ ./run_dev_env.sh
|
26 |
```
|
27 |
-
|
28 |
-
* After you are finished your modification,
|
29 |
-
*
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
### TODO:
|
32 |
- [ ] Web UI
|
33 |
- [ ] Testing various datasets as basis for training
|
|
|
14 |
* Next, clone the repository you just forked by typing the following command in your terminal:
|
15 |
```bash
|
16 |
$ git clone https://dagshub.com/<your-dagshub-username>/SavtaDepth.git
|
|
|
17 |
```
|
18 |
+
* To get your environment up and running docker is the best way to go. We use an instance of [MLWorkspace](https://github.com/ml-tooling/ml-workspace).
|
19 |
+
* You can Just run the following commands to get it started.
|
20 |
+
|
21 |
+
```bash
|
22 |
+
$ chmod +x run_dev_env.sh
|
23 |
+
$ ./run_dev_env.sh
|
24 |
+
```
|
25 |
+
|
26 |
+
* Open localhost:8080 to see the workspace you have created. You will be asked for a token โ enter `dagshub_savta`
|
27 |
+
* In the top right you have a menu called `Open Tool`. Click that button and choose terminal (alternatively open VSCode and open terminal there) and type in the following commands to install a virtualenv and dependencies:
|
28 |
+
|
29 |
+
```bash
|
30 |
+
$ make env
|
31 |
+
$ conda activate savta_depth
|
32 |
+
$ make requirements
|
33 |
+
```
|
34 |
+
* Pull the dvc files to your workspace by typing:
|
35 |
+
|
36 |
```bash
|
37 |
+
$ dvc checkout #use this to get the data, models etc
|
|
|
38 |
```
|
39 |
+
|
40 |
+
* After you are finished your modification, make sure to do the following:
|
41 |
+
* Freeze your virtualenv by typing in the terminal:
|
42 |
+
|
43 |
+
```bash
|
44 |
+
pip freeze > requirements.txt
|
45 |
+
```
|
46 |
+
|
47 |
+
* Push your code to DAGsHub, and your dvc managed files to your dvc remote. In order to setup a dvc remote please refer to [this guide](https://dagshub.com/docs/getting-started/set-up-remote-storage-for-data-and-models/).
|
48 |
+
* Create a Pull Request on DAGsHub!
|
49 |
+
* ๐ถ
|
50 |
+
|
51 |
### TODO:
|
52 |
- [ ] Web UI
|
53 |
- [ ] Testing various datasets as basis for training
|
requirements.txt
CHANGED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
certifi==2020.6.20
|
run_dev_env.sh
CHANGED
@@ -1,10 +1,7 @@
|
|
1 |
-
docker run
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
--
|
6 |
-
--
|
7 |
-
|
8 |
-
--no-browser \
|
9 |
-
--NotebookApp.token='' \
|
10 |
-
--NotebookApp.password=''
|
|
|
1 |
+
docker run -d \
|
2 |
+
-p 8080:8080 \
|
3 |
+
--name "ml-workspace" -v "${PWD}:/workspace" \
|
4 |
+
--env AUTHENTICATE_VIA_JUPYTER="dagshub_savta" \
|
5 |
+
--shm-size 512m \
|
6 |
+
--restart always \
|
7 |
+
mltooling/ml-workspace:latest
|
|
|
|
|
|
src/code/__pycache__/make_dataset.cpython-37.pyc
ADDED
Binary file (143 Bytes). View file
|
|
src/code/make_dataset.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
print('hello world')
|