import os import gradio as gr from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain_groq import ChatGroq from langchain_huggingface import HuggingFaceEmbeddings from langchain_chroma import Chroma from langchain_core.prompts import PromptTemplate # Load the API key from environment variables groq_api_key = os.getenv("Groq_API_Key") # Initialize the language model with the specified model and API key llm = ChatGroq(model="llama-3.1-70b-versatile", api_key=groq_api_key) # Initialize the embedding model embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1") # Load the vector store from a local directory vectorstore = Chroma( "Starwars_Vectordb", embedding=embed_model, ) # Convert the vector store to a retriever retriever = vectorstore.as_retriever() # Define the prompt template for the language model template = """You are a Star Wars assistant for answering questions. Use the provided context to answer the question. If you don't know the answer, say so. Explain your answer in detail. Do not discuss the context in your response; just provide the answer directly. Context: {context} Question: {question} Answer:""" rag_prompt = PromptTemplate.from_template(template) # Create the RAG (Retrieval-Augmented Generation) chain rag_chain = ( {"context": retriever, "question": RunnablePassthrough()} | rag_prompt | llm | StrOutputParser() ) # Define the function to stream the RAG memory def rag_memory_stream(text): partial_text = "" for new_text in rag_chain.stream(text): partial_text += new_text # Yield the updated conversation history yield partial_text # Set up the Gradio interface title = "Real-time AI App with Groq API and LangChain" demo = gr.Interface( title=title, fn=rag_memory_stream, inputs="text", outputs="text", live=True, batch=True, max_batch_size=10000, concurrency_limit=16, ) # Launch the Gradio interface demo.queue() demo.launch()