Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import asyncio
|
4 |
+
from moviepy.editor import AudioFileClip, concatenate_audioclips
|
5 |
+
from huggingface_hub import InferenceClient
|
6 |
+
import torch
|
7 |
+
import edge_tts
|
8 |
+
import tempfile
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
# Initialize Hugging Face Inference Client
|
12 |
+
Client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
|
13 |
+
generator = torch.Generator().manual_seed(42)
|
14 |
+
|
15 |
+
async def text_to_speech(text, voice, filename):
|
16 |
+
communicate = edge_tts.Communicate(text, voice)
|
17 |
+
await communicate.save(filename)
|
18 |
+
|
19 |
+
async def generate_conversation(script):
|
20 |
+
title = script['title']
|
21 |
+
content = script['content']
|
22 |
+
|
23 |
+
temp_files = []
|
24 |
+
|
25 |
+
tasks = []
|
26 |
+
for key, text in content.items():
|
27 |
+
speaker = key.split('_')[0] # Extract the speaker name
|
28 |
+
index = key.split('_')[1] # Extract the dialogue index
|
29 |
+
voice = "en-US-JennyNeural" if speaker == "Alice" else "en-US-GuyNeural"
|
30 |
+
|
31 |
+
# Create temporary file for each speaker's dialogue
|
32 |
+
temp_file = tempfile.NamedTemporaryFile(suffix='.mp3', delete=False)
|
33 |
+
temp_files.append(temp_file.name)
|
34 |
+
|
35 |
+
filename = temp_file.name
|
36 |
+
tasks.append(text_to_speech(text, voice, filename))
|
37 |
+
print(f"Generated audio for {speaker}_{index}: {filename}")
|
38 |
+
|
39 |
+
await asyncio.gather(*tasks)
|
40 |
+
|
41 |
+
# Combine the audio files using moviepy
|
42 |
+
audio_clips = [AudioFileClip(temp_file) for temp_file in temp_files]
|
43 |
+
combined = concatenate_audioclips(audio_clips)
|
44 |
+
|
45 |
+
# Create temporary file for the combined output
|
46 |
+
temp_output_file = tempfile.NamedTemporaryFile(suffix='.mp3', delete=False)
|
47 |
+
output_filename = temp_output_file.name
|
48 |
+
|
49 |
+
# Save the combined file
|
50 |
+
combined.write_audiofile(output_filename)
|
51 |
+
print(f"Combined audio saved as: {output_filename}")
|
52 |
+
|
53 |
+
# Clean up temporary files
|
54 |
+
for temp_file in temp_files:
|
55 |
+
os.remove(temp_file)
|
56 |
+
print(f"Deleted temporary file: {temp_file}")
|
57 |
+
|
58 |
+
return output_filename
|
59 |
+
|
60 |
+
# Function to generate podcast based on user input
|
61 |
+
def generate_podcast(topic, seed):
|
62 |
+
system_instructions = '''[SYSTEM] You are an educational podcast generator. You have to create a podcast between Alice and Bob that gives an overview of the topic given by the user.
|
63 |
+
Please provide the script in the following JSON format:
|
64 |
+
{
|
65 |
+
"title": "[string]",
|
66 |
+
"content": {
|
67 |
+
"Alice_0": "[string]",
|
68 |
+
"BOB_0": "[string]",
|
69 |
+
...
|
70 |
+
}
|
71 |
+
}
|
72 |
+
Be concise.
|
73 |
+
'''
|
74 |
+
|
75 |
+
text = f" Topic: {topic}"
|
76 |
+
formatted_prompt = system_instructions + text
|
77 |
+
stream = Client.text_generation(formatted_prompt, max_new_tokens=1024, seed=seed, stream=True, details=True, return_full_text=False)
|
78 |
+
|
79 |
+
generated_script = ""
|
80 |
+
for response in stream:
|
81 |
+
if not response.token.text == "</s>":
|
82 |
+
generated_script += response.token.text
|
83 |
+
|
84 |
+
# Generate the podcast
|
85 |
+
script_json = json.loads(generated_script) # Use the generated script as input
|
86 |
+
output_filename = asyncio.run(generate_conversation(script_json))
|
87 |
+
print("Output File:"+output_filename)
|
88 |
+
|
89 |
+
# Read the generated audio file
|
90 |
+
with open(output_filename, "rb") as f:
|
91 |
+
audio_bytes = f.read()
|
92 |
+
|
93 |
+
# Clean up the final output temporary file
|
94 |
+
os.remove(output_filename)
|
95 |
+
print(f"Deleted temporary file: {output_filename}")
|
96 |
+
|
97 |
+
return audio_bytes
|
98 |
+
|
99 |
+
DESCRIPTION = """ # <center><b>PODGEN 📻</b></center>
|
100 |
+
### <center>Generate a podcast on any topic</center>
|
101 |
+
### <center>Use the Power of llms to understand any topic better</center>
|
102 |
+
"""
|
103 |
+
|
104 |
+
with gr.Blocks(css="style.css") as demo:
|
105 |
+
gr.Markdown(DESCRIPTION)
|
106 |
+
with gr.Row():
|
107 |
+
|
108 |
+
seed = gr.Slider(
|
109 |
+
label="Seed",
|
110 |
+
minimum=0,
|
111 |
+
maximum=999999,
|
112 |
+
step=1,
|
113 |
+
value=0,
|
114 |
+
visible=False
|
115 |
+
)
|
116 |
+
input = gr.Textbox(label="Topic", placeholder="Enter a topic")
|
117 |
+
output = gr.Audio(label="Podgen", type="filepath",
|
118 |
+
interactive=False,
|
119 |
+
autoplay=True,
|
120 |
+
elem_classes="audio")
|
121 |
+
gr.Interface(
|
122 |
+
batch=True,
|
123 |
+
max_batch_size=10,
|
124 |
+
fn=generate_podcast,
|
125 |
+
inputs=[input, seed],
|
126 |
+
outputs=[output], live=True)
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
demo.queue(max_size=200).launch()
|