from llama_index.core.retrievers import VectorIndexRetriever from llama_index.core import QueryBundle import gradio as gr import pandas as pd from llama_index.core.postprocessor import LLMRerank from IPython.display import display, HTML from llama_index.core.vector_stores import ( MetadataFilter, MetadataFilters, FilterOperator, FilterOperator ) from llama_index.core.tools import RetrieverTool from llama_index.core.retrievers import RouterRetriever from llama_index.core.selectors import PydanticSingleSelector from llama_index.core import ( VectorStoreIndex, SimpleKeywordTableIndex, SimpleDirectoryReader, ) from llama_index.core import SummaryIndex, Settings from llama_index.core.schema import IndexNode from llama_index.core.tools import QueryEngineTool, ToolMetadata from llama_index.llms.openai import OpenAI from llama_index.core.callbacks import CallbackManager from llama_index.core import Document import os from llama_index.embeddings.openai import OpenAIEmbedding import nest_asyncio import pandas as pd import hashlib import tiktoken from dotenv import load_dotenv load_dotenv() nest_asyncio.apply() openai_key = os.getenv('openai_key_secret') os.environ["OPENAI_API_KEY"] = openai_key llm=OpenAI(temperature=0, model="gpt-4o") Settings.llm = llm Settings.embed_model = OpenAIEmbedding(model="text-embedding-ada-002") ds=pd.read_excel("data_metropole 2.xlsx") # df est la DATAFRAME qui contient le fichier source df=ds.drop(columns=['Theme ID', 'SousTheme ID', 'Signataire Matricule', 'Suppleant Matricule', 'Date Nomination', 'Date Commite Technique', 'Numero', 'Libelle', 'Date Creation', 'Date Debut']) #la DATAFRAME (filter_signataire) est celle qui contient les colonne relative au signataire #la DATAFRAME (filter) est celle qui contient les colonne relative au département df['Item Text'] = df['Item Text'].replace('signature', '', regex=True) df['Item Text'] = df['Item Text'].replace('cosignature', '', regex=True) filter_signataire = df[['Signataire', 'Fonction']] filter_signataire = filter_signataire.drop_duplicates() filter = df[['Collectivite', 'Direction DGA', 'Liste Service Text']] filter = filter.drop_duplicates() # pre traitement est cleaning des dataframe df = df.dropna(subset=['Item Text']) df_sorted = df.sort_values(by=['Collectivite', 'Direction DGA', 'Liste Service Text', 'Item Text','Theme Title','SousTheme Title','Item Text']) #traietement des dataframe df.loc[:, 'content'] = df.apply(lambda x: f''' / Theme : {x['Theme Title'] or ''} / Sous-Theme : {x['SousTheme Title'] or ''} / Item : {x['Item Text'] or ''} / Signataire : {x['Signataire'] or ''} / Suppleant : {x['Suppleant'] or ''} / Les services : {x['Liste Service Text'] or ''} ''', axis=1) ############# df = df.fillna(value='') filter = filter.fillna(value='') filter_signataire = filter_signataire.fillna(value='') ############# df.loc[:, 'description'] = df.apply(lambda x: f'''Collectivite : {x['Collectivite'] or ''} Direction : {x['Direction DGA'] or ''} Liste des Service : {x['Liste Service Text'] or ''} ''', axis=1) filter.loc[:, 'description'] = filter.apply(lambda x: f'''Collectivite : {x['Collectivite'] or ''} Direction : {x['Direction DGA'] or ''} Liste des Service : {x['Liste Service Text'] or ''} ''', axis=1) filter_signataire.loc[:, 'description'] = filter_signataire.apply(lambda x: f'''Signataire : {x['Signataire'] or ''} Fonction : {x['Fonction'] or ''} ''', axis=1) def hachage(row): return hashlib.sha1(row.encode("utf-8")).hexdigest() # le hashage df['hash'] = df.apply(lambda x: hachage(f'''Collectivite : {x['Collectivite'] or ''} Direction : {x['Direction DGA'] or ''} Liste des Service : {x['Liste Service Text'] or ''} '''), axis=1) filter['hash'] = filter.apply(lambda x: hachage(f'''Collectivite : {x['Collectivite'] or ''} Direction : {x['Direction DGA'] or ''} Liste des Service : {x['Liste Service Text'] or ''} '''), axis=1) #################################################" filter_signataire['hash'] = filter_signataire.apply(lambda x: hachage(f'''Signataire : {x['Signataire'] or ''} '''), axis=1) #construction des DOCUMENTS pour la vectorisation description_docs = [Document(text=row['description'],metadata={"id_documents": row['hash']}) for index, row in filter.iterrows()] content_docs = [Document(text=row['content'],metadata={"id_documents": row['hash']}) for index, row in df.iterrows()] signataire_docs = [Document(text=row['Signataire'],metadata={"id_signataire": row['hash']}) for index, row in filter_signataire.iterrows()] content_signataire = [Document(text=row['content'],metadata={"id_signataire": row['hash']}) for index, row in df.iterrows()] index = VectorStoreIndex.from_documents( description_docs, show_progress = True ) index_all = VectorStoreIndex.from_documents( content_docs, show_progress = True ) index_signataire = VectorStoreIndex.from_documents( signataire_docs, show_progress = True ) index_all_signataire = VectorStoreIndex.from_documents( content_signataire, show_progress = True ) def get_retrieved_nodes( query_str, vector_top_k=10, reranker_top_n=3, with_reranker=False,index=index): query_bundle = QueryBundle(query_str) # configure retriever retriever = VectorIndexRetriever( index=index, similarity_top_k=vector_top_k, ) retrieved_nodes = retriever.retrieve(query_bundle) if with_reranker: # configure reranker reranker = LLMRerank( choice_batch_size=5, top_n=reranker_top_n, ) retrieved_nodes = reranker.postprocess_nodes( retrieved_nodes, query_bundle ) return retrieved_nodes def get_all_text(new_nodes): texts = [] for i, node in enumerate(new_nodes, 1): texts.append(f"\nDocument {i} : {node.get_text()}") return ' '.join(texts) def further_retrieve(query): # Retrieve new nodes based on the query new_nodes = get_retrieved_nodes( query, index=index, vector_top_k=10, reranker_top_n=5, with_reranker=False, ) new_nodes_signataire = get_retrieved_nodes( query, index=index_all_signataire, vector_top_k=10, reranker_top_n=5, with_reranker=False, ) filters = MetadataFilters( filters=[ MetadataFilter(key="id_documents", value=[node.metadata['id_documents'] for node in new_nodes], operator=FilterOperator.IN) ], ) filters_s = MetadataFilters( filters=[ MetadataFilter(key="id_signataire", value=[node.metadata['id_signataire'] for node in new_nodes_signataire], operator=FilterOperator.IN) ], ) # Create a retriever with the specified filters retriever_description = index_all.as_retriever(filters=filters, similarity_top_k=15) retriever_signataire= index_all_signataire.as_retriever(filters=filters_s,similarity_top_k=4) # initialize tools description_tool = RetrieverTool.from_defaults( retriever=retriever_description, description="Useful for retrieving specific context from direction, liste service and collectivite", ) signataire_tool = RetrieverTool.from_defaults( retriever=retriever_signataire, description="Useful for retrieving specific context from signataire and fonction", ) # define retriever retriever = RouterRetriever( selector=PydanticSingleSelector.from_defaults(llm=llm), retriever_tools=[ description_tool, signataire_tool, ], ) try : query_bundle = QueryBundle(query) # Retrieve nodes based on the original query and filters retrieved_nodes = retriever.retrieve(query_bundle) reranker = LLMRerank( choice_batch_size=5, # Process 5 nodes at a time top_n=10 # Return the top 7 reranked nodes ) # Post-process the retrieved nodes by reranking them reranked_nodes = reranker.postprocess_nodes(retrieved_nodes, query_bundle) return get_all_text(reranked_nodes) except : print("No rerank") return get_all_text(retriever.retrieve(query)) def estimate_tokens(text): # Encoder le texte pour obtenir les tokens encoding = tiktoken.get_encoding("cl100k_base") tokens = encoding.encode(text) return len(tokens) def question_reformulation(question): from openai import OpenAI client = OpenAI(api_key=openai_key) stream = client.chat.completions.create( model="gpt-4o", messages=[{"role": "system", "content": "reformule la question en specifiant le domaine de la question."}, {"role": "user", "content": question} ], ) resultat = stream.choices[0].message.content return resultat history_with_docs = [] def process_final(user_prom, history): global history_with_docs documents = further_retrieve(user_prom) user_question = question_reformulation(user_prom) history_with_docs.append((user_prom, documents)) system_p = f"""agit come un expert financier et un agent de la metropole expert dans la recherche des deleguation de signature . L'utilisateur posera une question et tu devras trouver la réponse dans les documents suivants.Focalise sur les service et la direction du signataire que l'utilisateur cherche. Tu ne dois pas poser de question en retour.Tu ne dois pas mentionner le numéro des documents. Tu t'exprimes dans la même langue que l'utilisateur., DOCUMENTS : {documents} instruction : -donne les signataire et les supplient et reponds de facon directe. -ta reponse peut se trouver sur plusieurs document -justifie la raison de ta reponse -la question fait reference a un service tres precis -reponds par une liste structuree """ print("PHASE 03 passing to LLM\n") sys_p = f"<|im_start|>system \n{system_p}\n<|im_end|>" prompt_f = "" # total_tokens = estimate_tokens(prompt_f) # for val in reversed(history): # if val[0]: # Si c'est une question utilisateur # # Chercher le document correspondant dans history_with_docs # for past_question, past_documents in reversed(history_with_docs): # if past_question == val[0]: # user_p = f" <|im_start|>user \n Documents: \n {past_documents}\n Question :{val[0]}\n<|im_end|>" # break # if val[1]: # Si c'est une réponse de l'assistant # assistant_p = f" <|im_start|>assistant \n {val[1]}\n<|im_end|>" # current_tokens = estimate_tokens(user_p+assistant_p) # if total_tokens + current_tokens > 3000: # break # else: # prompt_f = user_p + assistant_p + prompt_f # total_tokens += current_tokens prompt_f = f"{sys_p} <|im_start|>user\n {user_question} \n<|im_end|><|im_start|>assistant \n" gen = llm.stream_complete(formatted=True, prompt=prompt_f) # print(f"le nombre TOTAL de tokens : {total_tokens}\n") print("_"*100) print(prompt_f) print("o"*100) for response in gen: yield response.text from gradio import gradio as gr # mychatbot = gr.Chatbot( # avatar_images=["./user_icon.png", "./metro.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True, # ) # description = """ #

#

# rick #
#

#

Made by KHEOPS AI

# """ # demo = gr.ChatInterface( # fn=process_final, # chatbot=mychatbot, # title="METROPOLE SIGNATAIRE CHATBOT", # description=description, # ) # demo.launch(share=True, debug =True) # Gradio Interface with gr.Blocks() as demo: with gr.Row(): description = """

METROPOLE SIGNATAIRE CHATBOT

rick

Développé par KHEOPS AI

""" gr.HTML(description) chatbot = gr.Chatbot(height = "20rem") msg = gr.Textbox(show_label=False,placeholder = "Poser votre question ...") clear = gr.Button("Réinitialiser") def user(user_message, history): # Capture the user message and pass it to 'process_final' return "", history + [[user_message, None]] def bot(history): # Get the last user message from the history user_message = history[-1][0] # Process it using the 'process_final' function gen = process_final(user_message, history) bot_message = "" for chunk in gen: bot_message += chunk history[-1][1] = bot_message # Update bot response in the conversation history yield history msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( bot, chatbot, chatbot ) clear.click(lambda: None, None, chatbot, queue=False) demo.launch(share=True, debug =True)