Spaces:
Runtime error
Runtime error
File size: 6,409 Bytes
aa95dd5 530748c ad81144 aa95dd5 2b48c61 aa95dd5 875ff99 aa95dd5 8b0db71 132e7e7 8b0db71 ad81144 132e7e7 8b0db71 79e9146 8b0db71 2b48c61 a4cb207 2b48c61 aa95dd5 79e9146 aa95dd5 8b0db71 2636400 925df59 1fcb37d ad81144 aeb0a99 ad81144 d64a0b1 12d2fcc 7210b03 ad81144 d64a0b1 ad81144 54dfa91 ad81144 8b0db71 ad81144 fc7a5f0 8b0db71 aa95dd5 8b0db71 aa95dd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import gradio as gr
import os
import tempfile
from openai import OpenAI
from tts_voice import tts_order_voice
import edge_tts
import tempfile
import anyio
# Set an environment variable for key
#os.environ['OPENAI_API_KEY'] = os.environ.get('OPENAI_API_KEY')
#client = OpenAI() # add api_key
import torch
import torchaudio
import gradio as gr
from scipy.io import wavfile
from scipy.io.wavfile import write
from speechbrain.pretrained import SpectralMaskEnhancement
enhance_model = SpectralMaskEnhancement.from_hparams(
source="speechbrain/metricgan-plus-voicebank",
savedir="pretrained_models/metricgan-plus-voicebank",
)
knn_vc = torch.hub.load('bshall/knn-vc', 'knn_vc', prematched=True, trust_repo=True, pretrained=True, device='cpu')
language_dict = tts_order_voice
async def text_to_speech_edge(text, language_code):
voice = language_dict[language_code]
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return "语音合成完成:{}".format(text), tmp_path
def voice_change(audio_in, audio_ref):
samplerate1, data1 = wavfile.read(audio_in)
samplerate2, data2 = wavfile.read(audio_ref)
write("./audio_in.wav", samplerate1, data1)
write("./audio_ref.wav", samplerate2, data2)
query_seq = knn_vc.get_features("./audio_in.wav")
matching_set = knn_vc.get_matching_set(["./audio_ref.wav"])
out_wav = knn_vc.match(query_seq, matching_set, topk=4)
torchaudio.save('output.wav', out_wav[None], 16000)
noisy = enhance_model.load_audio(
'output.wav'
).unsqueeze(0)
enhanced = enhance_model.enhance_batch(noisy, lengths=torch.tensor([1.]))
torchaudio.save('enhanced.wav', enhanced.cpu(), 16000)
return 'enhanced.wav'
def tts(text, model, voice, api_key):
if len(text)>300:
raise gr.Error('您输入的文本字符多于300个,请缩短您的文本')
if api_key == '':
raise gr.Error('Please enter your OpenAI API Key')
else:
try:
client = OpenAI(api_key=api_key)
response = client.audio.speech.create(
model=model, # "tts-1","tts-1-hd"
voice=voice, # 'alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer'
input=text,
)
except Exception as error:
# Handle any exception that occurs
raise gr.Error("An error occurred while generating speech. Please check your API key and try again.")
print(str(error))
# Create a temp file to save the audio
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
temp_file.write(response.content)
# Get the file path of the temp file
temp_file_path = temp_file.name
return temp_file_path
app = gr.Blocks()
with app:
gr.Markdown("# <center>🌟 - OpenAI TTS + AI变声</center>")
gr.Markdown("### <center>🎶 地表最强文本转语音模型 + 3秒实时AI变声,支持中文!Powered by [OpenAI TTS](https://platform.openai.com/docs/guides/text-to-speech) and [KNN-VC](https://github.com/bshall/knn-vc) </center>")
gr.Markdown("### <center>🌊 更多精彩应用,敬请关注[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>")
with gr.Tab("🤗 OpenAI TTS"):
with gr.Row(variant='panel'):
api_key = gr.Textbox(type='password', label='OpenAI API Key', value="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", placeholder='请在此填写您的OpenAI API Key')
model = gr.Dropdown(choices=['tts-1','tts-1-hd'], label='请选择模型(tts-1推理更快,tts-1-hd音质更好)', value='tts-1')
voice = gr.Dropdown(choices=['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer'], label='请选择一个说话人', value='alloy')
with gr.Row():
with gr.Column():
inp_text = gr.Textbox(label="请填写您想生成的文本(中英文皆可)", placeholder="想说却还没说的 还很多 攒着是因为想写成歌", lines=5)
btn_text = gr.Button("一键开启真实拟声吧", variant="primary")
with gr.Column():
inp1 = gr.Audio(type="filepath", label="OpenAI TTS真实拟声", interactive=False)
inp2 = gr.Audio(type="filepath", label="请上传AI变声的参照音频(决定变声后的语音音色)")
btn1 = gr.Button("一键开启AI变声吧", variant="primary")
with gr.Column():
out1 = gr.Audio(type="filepath", label="AI变声后的专属音频")
btn_text.click(tts, [inp_text, model, voice, api_key], inp1)
btn1.click(voice_change, [inp1, inp2], out1)
with gr.Tab("⚡ Edge TTS"):
with gr.Row():
input_text = gr.Textbox(lines=5, placeholder="想说却还没说的 还很多 攒着是因为想写成歌", label="请填写您想生成的文本(中英文皆可)")
default_language = list(language_dict.keys())[15]
language = gr.Dropdown(choices=list(language_dict.keys()), value=default_language, label="请选择文本对应的语言")
btn_edge = gr.Button("一键开启真实拟声吧", variant="primary")
output_text = gr.Textbox(label="输出文本", visible=False)
output_audio = gr.Audio(type="filepath", label="Edge TTS真实拟声")
with gr.Row():
inp_vc = gr.Audio(type="filepath", label="请上传AI变声的参照音频(决定变声后的语音音色)")
btn_vc = gr.Button("一键开启AI变声吧", variant="primary")
out_vc = gr.Audio(type="filepath", label="AI变声后的专属音频")
btn_edge.click(text_to_speech_edge, [input_text, language], [output_text, output_audio])
btn_vc.click(voice_change, [output_audio, inp_vc], out_vc)
gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。Get your OpenAI API Key [here](https://platform.openai.com/api-keys).</center>")
gr.HTML('''
<div class="footer">
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
</p>
</div>
''')
app.launch(show_error=True)
|