|
from __future__ import annotations |
|
|
|
import gc |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from controlnet_aux.util import HWC3 |
|
from diffusers import ( |
|
ControlNetModel, |
|
DiffusionPipeline, |
|
StableDiffusionControlNetPipeline, |
|
UniPCMultistepScheduler, |
|
) |
|
|
|
from cv_utils import resize_image |
|
from preprocessor import Preprocessor |
|
from settings import MAX_IMAGE_RESOLUTION, MAX_NUM_IMAGES |
|
|
|
CONTROLNET_MODEL_IDS = { |
|
"Openpose": "lllyasviel/control_v11p_sd15_openpose", |
|
"Canny": "lllyasviel/control_v11p_sd15_canny", |
|
"MLSD": "lllyasviel/control_v11p_sd15_mlsd", |
|
"scribble": "lllyasviel/control_v11p_sd15_scribble", |
|
"softedge": "lllyasviel/control_v11p_sd15_softedge", |
|
"segmentation": "lllyasviel/control_v11p_sd15_seg", |
|
"depth": "lllyasviel/control_v11f1p_sd15_depth", |
|
"NormalBae": "lllyasviel/control_v11p_sd15_normalbae", |
|
"lineart": "lllyasviel/control_v11p_sd15_lineart", |
|
"lineart_anime": "lllyasviel/control_v11p_sd15s2_lineart_anime", |
|
"shuffle": "lllyasviel/control_v11e_sd15_shuffle", |
|
"ip2p": "lllyasviel/control_v11e_sd15_ip2p", |
|
"inpaint": "lllyasviel/control_v11e_sd15_inpaint", |
|
} |
|
|
|
|
|
def download_all_controlnet_weights() -> None: |
|
for model_id in CONTROLNET_MODEL_IDS.values(): |
|
ControlNetModel.from_pretrained(model_id) |
|
|
|
|
|
class Model: |
|
def __init__(self, base_model_id: str = "runwayml/stable-diffusion-v1-5", task_name: str = "Canny"): |
|
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
self.base_model_id = "" |
|
self.task_name = "" |
|
self.pipe = self.load_pipe(base_model_id, task_name) |
|
self.preprocessor = Preprocessor() |
|
|
|
def load_pipe(self, base_model_id: str, task_name) -> DiffusionPipeline: |
|
if ( |
|
base_model_id == self.base_model_id |
|
and task_name == self.task_name |
|
and hasattr(self, "pipe") |
|
and self.pipe is not None |
|
): |
|
return self.pipe |
|
model_id = CONTROLNET_MODEL_IDS[task_name] |
|
controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float16) |
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
base_model_id, safety_checker=None, controlnet=controlnet, torch_dtype=torch.float16 |
|
) |
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) |
|
if self.device.type == "cuda": |
|
pipe.enable_xformers_memory_efficient_attention() |
|
pipe.to(self.device) |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
self.base_model_id = base_model_id |
|
self.task_name = task_name |
|
return pipe |
|
|
|
def set_base_model(self, base_model_id: str) -> str: |
|
if not base_model_id or base_model_id == self.base_model_id: |
|
return self.base_model_id |
|
del self.pipe |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
try: |
|
self.pipe = self.load_pipe(base_model_id, self.task_name) |
|
except Exception: |
|
self.pipe = self.load_pipe(self.base_model_id, self.task_name) |
|
return self.base_model_id |
|
|
|
def load_controlnet_weight(self, task_name: str) -> None: |
|
if task_name == self.task_name: |
|
return |
|
if self.pipe is not None and hasattr(self.pipe, "controlnet"): |
|
del self.pipe.controlnet |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
model_id = CONTROLNET_MODEL_IDS[task_name] |
|
controlnet = ControlNetModel.from_pretrained(model_id, torch_dtype=torch.float16) |
|
controlnet.to(self.device) |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
self.pipe.controlnet = controlnet |
|
self.task_name = task_name |
|
|
|
def get_prompt(self, prompt: str, additional_prompt: str) -> str: |
|
if not prompt: |
|
prompt = additional_prompt |
|
else: |
|
prompt = f"{prompt}, {additional_prompt}" |
|
return prompt |
|
|
|
@torch.autocast("cuda") |
|
def run_pipe( |
|
self, |
|
prompt: str, |
|
negative_prompt: str, |
|
control_image: PIL.Image.Image, |
|
num_images: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
) -> list[PIL.Image.Image]: |
|
generator = torch.Generator().manual_seed(seed) |
|
return self.pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_images_per_prompt=num_images, |
|
num_inference_steps=num_steps, |
|
generator=generator, |
|
image=control_image, |
|
).images |
|
|
|
@torch.inference_mode() |
|
def process_canny( |
|
self, |
|
image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
low_threshold: int, |
|
high_threshold: int, |
|
) -> list[PIL.Image.Image]: |
|
if image is None: |
|
raise ValueError |
|
if image_resolution > MAX_IMAGE_RESOLUTION: |
|
raise ValueError |
|
if num_images > MAX_NUM_IMAGES: |
|
raise ValueError |
|
|
|
self.preprocessor.load("Canny") |
|
control_image = self.preprocessor( |
|
image=image, low_threshold=low_threshold, high_threshold=high_threshold, detect_resolution=image_resolution |
|
) |
|
|
|
self.load_controlnet_weight("Canny") |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [control_image] + results |
|
|
|
@torch.inference_mode() |
|
def process_mlsd( |
|
self, |
|
image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
preprocess_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
value_threshold: float, |
|
distance_threshold: float, |
|
) -> list[PIL.Image.Image]: |
|
if image is None: |
|
raise ValueError |
|
if image_resolution > MAX_IMAGE_RESOLUTION: |
|
raise ValueError |
|
if num_images > MAX_NUM_IMAGES: |
|
raise ValueError |
|
|
|
self.preprocessor.load("MLSD") |
|
control_image = self.preprocessor( |
|
image=image, |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
thr_v=value_threshold, |
|
thr_d=distance_threshold, |
|
) |
|
self.load_controlnet_weight("MLSD") |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [control_image] + results |
|
|
|
@torch.inference_mode() |
|
def process_scribble( |
|
self, |
|
image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
preprocess_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
preprocessor_name: str, |
|
) -> list[PIL.Image.Image]: |
|
if image is None: |
|
raise ValueError |
|
if image_resolution > MAX_IMAGE_RESOLUTION: |
|
raise ValueError |
|
if num_images > MAX_NUM_IMAGES: |
|
raise ValueError |
|
|
|
if preprocessor_name == "None": |
|
image = HWC3(image) |
|
image = resize_image(image, resolution=image_resolution) |
|
control_image = PIL.Image.fromarray(image) |
|
elif preprocessor_name == "HED": |
|
self.preprocessor.load(preprocessor_name) |
|
control_image = self.preprocessor( |
|
image=image, |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
scribble=False, |
|
) |
|
elif preprocessor_name == "PidiNet": |
|
self.preprocessor.load(preprocessor_name) |
|
control_image = self.preprocessor( |
|
image=image, |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
safe=False, |
|
) |
|
self.load_controlnet_weight("scribble") |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [control_image] + results |
|
|
|
@torch.inference_mode() |
|
def process_scribble_interactive( |
|
self, |
|
image_and_mask: dict[str, np.ndarray], |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
) -> list[PIL.Image.Image]: |
|
if image_and_mask is None: |
|
raise ValueError |
|
if image_resolution > MAX_IMAGE_RESOLUTION: |
|
raise ValueError |
|
if num_images > MAX_NUM_IMAGES: |
|
raise ValueError |
|
|
|
image = image_and_mask["mask"] |
|
image = HWC3(image) |
|
image = resize_image(image, resolution=image_resolution) |
|
control_image = PIL.Image.fromarray(image) |
|
|
|
self.load_controlnet_weight("scribble") |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [control_image] + results |
|
|
|
@torch.inference_mode() |
|
def process_softedge( |
|
self, |
|
image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
preprocess_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
preprocessor_name: str, |
|
) -> list[PIL.Image.Image]: |
|
if image is None: |
|
raise ValueError |
|
if image_resolution > MAX_IMAGE_RESOLUTION: |
|
raise ValueError |
|
if num_images > MAX_NUM_IMAGES: |
|
raise ValueError |
|
|
|
if preprocessor_name == "None": |
|
image = HWC3(image) |
|
image = resize_image(image, resolution=image_resolution) |
|
control_image = PIL.Image.fromarray(image) |
|
elif preprocessor_name in ["HED", "HED safe"]: |
|
safe = "safe" in preprocessor_name |
|
self.preprocessor.load("HED") |
|
control_image = self.preprocessor( |
|
image=image, |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
scribble=safe, |
|
) |
|
elif preprocessor_name in ["PidiNet", "PidiNet safe"]: |
|
safe = "safe" in preprocessor_name |
|
self.preprocessor.load("PidiNet") |
|
control_image = self.preprocessor( |
|
image=image, |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
safe=safe, |
|
) |
|
else: |
|
raise ValueError |
|
self.load_controlnet_weight("softedge") |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [control_image] + results |
|
|
|
@torch.inference_mode() |
|
def process_openpose( |
|
self, |
|
image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
preprocess_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
preprocessor_name: str, |
|
) -> list[PIL.Image.Image]: |
|
if image is None: |
|
raise ValueError |
|
if image_resolution > MAX_IMAGE_RESOLUTION: |
|
raise ValueError |
|
if num_images > MAX_NUM_IMAGES: |
|
raise ValueError |
|
|
|
if preprocessor_name == "None": |
|
image = HWC3(image) |
|
image = resize_image(image, resolution=image_resolution) |
|
control_image = PIL.Image.fromarray(image) |
|
else: |
|
self.preprocessor.load("Openpose") |
|
control_image = self.preprocessor( |
|
image=image, |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
hand_and_face=True, |
|
) |
|
self.load_controlnet_weight("Openpose") |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [control_image] + results |
|
|
|
@torch.inference_mode() |
|
def process_segmentation( |
|
self, |
|
image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
preprocess_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
preprocessor_name: str, |
|
) -> list[PIL.Image.Image]: |
|
if image is None: |
|
raise ValueError |
|
if image_resolution > MAX_IMAGE_RESOLUTION: |
|
raise ValueError |
|
if num_images > MAX_NUM_IMAGES: |
|
raise ValueError |
|
|
|
if preprocessor_name == "None": |
|
image = HWC3(image) |
|
image = resize_image(image, resolution=image_resolution) |
|
control_image = PIL.Image.fromarray(image) |
|
else: |
|
self.preprocessor.load(preprocessor_name) |
|
control_image = self.preprocessor( |
|
image=image, |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
) |
|
self.load_controlnet_weight("segmentation") |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [control_image] + results |
|
|
|
@torch.inference_mode() |
|
def process_depth( |
|
self, |
|
image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
preprocess_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
preprocessor_name: str, |
|
) -> list[PIL.Image.Image]: |
|
if image is None: |
|
raise ValueError |
|
if image_resolution > MAX_IMAGE_RESOLUTION: |
|
raise ValueError |
|
if num_images > MAX_NUM_IMAGES: |
|
raise ValueError |
|
|
|
if preprocessor_name == "None": |
|
image = HWC3(image) |
|
image = resize_image(image, resolution=image_resolution) |
|
control_image = PIL.Image.fromarray(image) |
|
else: |
|
self.preprocessor.load(preprocessor_name) |
|
control_image = self.preprocessor( |
|
image=image, |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
) |
|
self.load_controlnet_weight("depth") |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [control_image] + results |
|
|
|
@torch.inference_mode() |
|
def process_normal( |
|
self, |
|
image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
preprocess_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
preprocessor_name: str, |
|
) -> list[PIL.Image.Image]: |
|
if image is None: |
|
raise ValueError |
|
if image_resolution > MAX_IMAGE_RESOLUTION: |
|
raise ValueError |
|
if num_images > MAX_NUM_IMAGES: |
|
raise ValueError |
|
|
|
if preprocessor_name == "None": |
|
image = HWC3(image) |
|
image = resize_image(image, resolution=image_resolution) |
|
control_image = PIL.Image.fromarray(image) |
|
else: |
|
self.preprocessor.load("NormalBae") |
|
control_image = self.preprocessor( |
|
image=image, |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
) |
|
self.load_controlnet_weight("NormalBae") |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [control_image] + results |
|
|
|
@torch.inference_mode() |
|
def process_lineart( |
|
self, |
|
image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
preprocess_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
preprocessor_name: str, |
|
) -> list[PIL.Image.Image]: |
|
if image is None: |
|
raise ValueError |
|
if image_resolution > MAX_IMAGE_RESOLUTION: |
|
raise ValueError |
|
if num_images > MAX_NUM_IMAGES: |
|
raise ValueError |
|
|
|
if preprocessor_name in ["None", "None (anime)"]: |
|
image = HWC3(image) |
|
image = resize_image(image, resolution=image_resolution) |
|
control_image = PIL.Image.fromarray(image) |
|
elif preprocessor_name in ["Lineart", "Lineart coarse"]: |
|
coarse = "coarse" in preprocessor_name |
|
self.preprocessor.load("Lineart") |
|
control_image = self.preprocessor( |
|
image=image, |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
coarse=coarse, |
|
) |
|
elif preprocessor_name == "Lineart (anime)": |
|
self.preprocessor.load("LineartAnime") |
|
control_image = self.preprocessor( |
|
image=image, |
|
image_resolution=image_resolution, |
|
detect_resolution=preprocess_resolution, |
|
) |
|
if "anime" in preprocessor_name: |
|
self.load_controlnet_weight("lineart_anime") |
|
else: |
|
self.load_controlnet_weight("lineart") |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [control_image] + results |
|
|
|
@torch.inference_mode() |
|
def process_shuffle( |
|
self, |
|
image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
preprocessor_name: str, |
|
) -> list[PIL.Image.Image]: |
|
if image is None: |
|
raise ValueError |
|
if image_resolution > MAX_IMAGE_RESOLUTION: |
|
raise ValueError |
|
if num_images > MAX_NUM_IMAGES: |
|
raise ValueError |
|
|
|
if preprocessor_name == "None": |
|
image = HWC3(image) |
|
image = resize_image(image, resolution=image_resolution) |
|
control_image = PIL.Image.fromarray(image) |
|
else: |
|
self.preprocessor.load(preprocessor_name) |
|
control_image = self.preprocessor( |
|
image=image, |
|
image_resolution=image_resolution, |
|
) |
|
self.load_controlnet_weight("shuffle") |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [control_image] + results |
|
|
|
@torch.inference_mode() |
|
def process_ip2p( |
|
self, |
|
image: np.ndarray, |
|
prompt: str, |
|
additional_prompt: str, |
|
negative_prompt: str, |
|
num_images: int, |
|
image_resolution: int, |
|
num_steps: int, |
|
guidance_scale: float, |
|
seed: int, |
|
) -> list[PIL.Image.Image]: |
|
if image is None: |
|
raise ValueError |
|
if image_resolution > MAX_IMAGE_RESOLUTION: |
|
raise ValueError |
|
if num_images > MAX_NUM_IMAGES: |
|
raise ValueError |
|
|
|
image = HWC3(image) |
|
image = resize_image(image, resolution=image_resolution) |
|
control_image = PIL.Image.fromarray(image) |
|
self.load_controlnet_weight("ip2p") |
|
results = self.run_pipe( |
|
prompt=self.get_prompt(prompt, additional_prompt), |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
num_images=num_images, |
|
num_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
seed=seed, |
|
) |
|
return [control_image] + results |
|
|