ControlNet-with-GPT-4 / app_scribble_interactive.py
hysts's picture
hysts HF staff
Migrate from yapf to black
f521e88
raw
history blame
3.91 kB
#!/usr/bin/env python
import gradio as gr
import numpy as np
from settings import (
DEFAULT_IMAGE_RESOLUTION,
DEFAULT_NUM_IMAGES,
MAX_IMAGE_RESOLUTION,
MAX_NUM_IMAGES,
MAX_SEED,
)
from utils import randomize_seed_fn
def create_canvas(w, h):
return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255
def create_demo(process):
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
canvas_width = gr.Slider(
label="Canvas width",
minimum=256,
maximum=MAX_IMAGE_RESOLUTION,
value=DEFAULT_IMAGE_RESOLUTION,
step=1,
)
canvas_height = gr.Slider(
label="Canvas height",
minimum=256,
maximum=MAX_IMAGE_RESOLUTION,
value=DEFAULT_IMAGE_RESOLUTION,
step=1,
)
create_button = gr.Button("Open drawing canvas!")
image = gr.Image(tool="sketch", brush_radius=10)
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button("Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(
label="Number of images", minimum=1, maximum=MAX_NUM_IMAGES, value=DEFAULT_NUM_IMAGES, step=1
)
image_resolution = gr.Slider(
label="Image resolution",
minimum=256,
maximum=MAX_IMAGE_RESOLUTION,
value=DEFAULT_IMAGE_RESOLUTION,
step=256,
)
num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=20, step=1)
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
a_prompt = gr.Textbox(label="Additional prompt", value="best quality, extremely detailed")
n_prompt = gr.Textbox(
label="Negative prompt",
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
)
with gr.Column():
result = gr.Gallery(label="Output", show_label=False, columns=2, object_fit="scale-down")
create_button.click(
fn=create_canvas,
inputs=[canvas_width, canvas_height],
outputs=image,
queue=False,
api_name=False,
)
inputs = [
image,
prompt,
a_prompt,
n_prompt,
num_samples,
image_resolution,
num_steps,
guidance_scale,
seed,
]
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=process,
inputs=inputs,
outputs=result,
api_name=False,
)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=process,
inputs=inputs,
outputs=result,
)
return demo
if __name__ == "__main__":
from model import Model
model = Model(task_name="scribble")
demo = create_demo(model.process_scribble_interactive)
demo.queue().launch()