File size: 4,286 Bytes
a660631 8ae4526 a660631 53b39de a660631 208f8fb 84448a9 208f8fb a660631 84448a9 a660631 84448a9 a660631 84448a9 a660631 84448a9 a660631 84448a9 a660631 84448a9 a660631 84448a9 a660631 84448a9 a660631 84448a9 a660631 84448a9 a660631 84448a9 a660631 84448a9 a660631 d6252d0 a660631 d6252d0 a660631 afddbfd a660631 681c919 a660631 319fa2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
#!/usr/bin/env python
from __future__ import annotations
import gradio as gr
import torch
from app_canny import create_demo as create_demo_canny
from app_depth import create_demo as create_demo_depth
from app_ip2p import create_demo as create_demo_ip2p
from app_lineart import create_demo as create_demo_lineart
from app_mlsd import create_demo as create_demo_mlsd
from app_normal import create_demo as create_demo_normal
from app_openpose import create_demo as create_demo_openpose
from app_scribble import create_demo as create_demo_scribble
from app_scribble_interactive import \
create_demo as create_demo_scribble_interactive
from app_segmentation import create_demo as create_demo_segmentation
from app_shuffle import create_demo as create_demo_shuffle
from app_softedge import create_demo as create_demo_softedge
from model import Model
from settings import (ALLOW_CHANGING_BASE_MODEL, DEFAULT_MODEL_ID,
SHOW_DUPLICATE_BUTTON)
DESCRIPTION = '# ControlNet v1.1'
if not torch.cuda.is_available():
DESCRIPTION += '\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>'
model = Model(base_model_id=DEFAULT_MODEL_ID, task_name='Canny')
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value='Duplicate Space for private use',
elem_id='duplicate-button',
visible=SHOW_DUPLICATE_BUTTON)
with gr.Tabs():
with gr.TabItem('Canny'):
create_demo_canny(model.process_canny)
with gr.TabItem('MLSD'):
create_demo_mlsd(model.process_mlsd)
with gr.TabItem('Scribble'):
create_demo_scribble(model.process_scribble)
with gr.TabItem('Scribble Interactive'):
create_demo_scribble_interactive(
model.process_scribble_interactive)
with gr.TabItem('SoftEdge'):
create_demo_softedge(model.process_softedge)
with gr.TabItem('OpenPose'):
create_demo_openpose(model.process_openpose)
with gr.TabItem('Segmentation'):
create_demo_segmentation(model.process_segmentation)
with gr.TabItem('Depth'):
create_demo_depth(model.process_depth)
with gr.TabItem('Normal map'):
create_demo_normal(model.process_normal)
with gr.TabItem('Lineart'):
create_demo_lineart(model.process_lineart)
with gr.TabItem('Content Shuffle'):
create_demo_shuffle(model.process_shuffle)
with gr.TabItem('Instruct Pix2Pix'):
create_demo_ip2p(model.process_ip2p)
with gr.Accordion(label='Base model', open=False):
with gr.Row():
with gr.Column(scale=5):
current_base_model = gr.Text(label='Current base model')
with gr.Column(scale=1):
check_base_model_button = gr.Button('Check current base model')
with gr.Row():
with gr.Column(scale=5):
new_base_model_id = gr.Text(
label='New base model',
max_lines=1,
placeholder='runwayml/stable-diffusion-v1-5',
info=
'The base model must be compatible with Stable Diffusion v1.5.',
interactive=ALLOW_CHANGING_BASE_MODEL)
with gr.Column(scale=1):
change_base_model_button = gr.Button(
'Change base model', interactive=ALLOW_CHANGING_BASE_MODEL)
if not ALLOW_CHANGING_BASE_MODEL:
gr.Markdown(
'''The base model is not allowed to be changed in this Space so as not to slow down the demo, but it can be changed if you duplicate the Space.'''
)
check_base_model_button.click(
fn=lambda: model.base_model_id,
outputs=current_base_model,
queue=False,
api_name='check_base_model',
)
new_base_model_id.submit(
fn=model.set_base_model,
inputs=new_base_model_id,
outputs=current_base_model,
api_name=False,
)
change_base_model_button.click(
fn=model.set_base_model,
inputs=new_base_model_id,
outputs=current_base_model,
api_name=False,
)
demo.queue(max_size=20).launch()
|