import os, sys import tempfile import gradio as gr from src.gradio_demo import SadTalker # from src.utils.text2speech import TTSTalker from huggingface_hub import snapshot_download def get_source_image(image): return image try: import webui # in webui in_webui = True except: in_webui = False def toggle_audio_file(choice): if choice == False: return gr.update(visible=True), gr.update(visible=False) else: return gr.update(visible=False), gr.update(visible=True) def ref_video_fn(path_of_ref_video): if path_of_ref_video is not None: return gr.update(value=True) else: return gr.update(value=False) def download_model(): REPO_ID = 'vinthony/SadTalker-V002rc' snapshot_download(repo_id=REPO_ID, local_dir='./checkpoints', local_dir_use_symlinks=True) def sadtalker_demo(): download_model() sad_talker = SadTalker(lazy_load=True) # tts_talker = TTSTalker() download_model() sad_talker = SadTalker(lazy_load=True) with gr.Blocks(analytics_enabled=False) as sadtalker_interface: gr.Markdown("

😭 SadTalker: Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation (CVPR 2023)

\ Arxiv       \ Homepage       \ Github
") gr.Markdown(""" You may duplicate the space and upgrade to GPU in settings for better performance and faster inference without waiting in the queue. Duplicate Space \
Alternatively, try our GitHub code on your own GPU. \ """) with gr.Row().style(equal_height=False): with gr.Column(variant='panel'): with gr.Tabs(elem_id="sadtalker_source_image"): with gr.TabItem('Source image'): with gr.Row(): source_image = gr.Image(label="Source image", source="upload", type="filepath", elem_id="img2img_image").style(width=512) with gr.Tabs(elem_id="sadtalker_driven_audio"): with gr.TabItem('Driving Methods'): with gr.Row(): driven_audio = gr.Audio(label="Input audio", source="upload", type="filepath") driven_audio_no = gr.Audio(label="Use IDLE mode, no audio is required", source="upload", type="filepath", visible=False) with gr.Column(): use_idle_mode = gr.Checkbox(label="Use Idle Animation", visible=False) length_of_audio = gr.Number(value=5, label="The length(seconds) of the generated video.", visible=False) use_idle_mode.change(toggle_audio_file, inputs=use_idle_mode, outputs=[driven_audio, driven_audio_no]) # todo with gr.Row(): ref_video = gr.Video(label="Reference Video", source="upload", type="filepath", elem_id="vidref", visible=False).style(width=512) with gr.Column(): use_ref_video = gr.Checkbox(label="Use Reference Video", visible=False) ref_info = gr.Radio(['pose', 'blink','pose+blink', 'all'], value='pose', label='Reference Video',info="How to borrow from reference Video?((fully transfer, aka, video driving mode))", visible=False) ref_video.change(ref_video_fn, inputs=ref_video, outputs=[use_ref_video]) # todo with gr.Column(variant='panel'): with gr.Tabs(elem_id="sadtalker_checkbox"): with gr.TabItem('Settings'): with gr.Column(variant='panel'): # width = gr.Slider(minimum=64, elem_id="img2img_width", maximum=2048, step=8, label="Manually Crop Width", value=512) # img2img_width # height = gr.Slider(minimum=64, elem_id="img2img_height", maximum=2048, step=8, label="Manually Crop Height", value=512) # img2img_width with gr.Row(): pose_style = gr.Slider(minimum=0, maximum=45, step=1, label="Pose style", value=0, visible=False) # exp_weight = gr.Slider(minimum=0, maximum=3, step=0.1, label="expression scale", value=1, visible=False) # blink_every = gr.Checkbox(label="use eye blink", value=True, visible=False) with gr.Row(): size_of_image = gr.Radio([256, 512], value=256, label='face model resolution', info="use 256/512 model?", visible=False) # preprocess_type = gr.Radio(['crop', 'resize','full', 'extcrop', 'extfull'], value='crop', label='preprocess', info="How to handle input image?", visible=False) with gr.Row(): is_still_mode = gr.Checkbox(label="Still Mode (fewer head motion, works with preprocess `full`)", value=True) facerender = gr.Radio(['facevid2vid','pirender'], value='facevid2vid', label='facerender', info="which face render?", visible=False) with gr.Row(): batch_size = gr.Slider(label="batch size in generation", step=1, maximum=10, value=2) enhancer = gr.Checkbox(label="GFPGAN as Face enhancer", value=True, visible=False) submit = gr.Button('Generate', elem_id="sadtalker_generate", variant='primary') with gr.Tabs(elem_id="sadtalker_genearted"): gen_video = gr.Video(label="Generated video", format="mp4").style(width=256) submit.click( fn=sad_talker.test, inputs=[source_image, driven_audio, preprocess_type, is_still_mode, enhancer, batch_size, size_of_image, pose_style, facerender, exp_weight, use_ref_video, ref_video, ref_info, use_idle_mode, length_of_audio, blink_every ], outputs=[gen_video] ) sadtalker_interface.queue().launch(debug=True)