File size: 6,818 Bytes
134e14e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
"""
Custom tokenizer model.
Author: https://www.github.com/gitmylo/
License: MIT
"""

import json
import os.path
from zipfile import ZipFile

import numpy
import torch
from torch import nn, optim
from torch.serialization import MAP_LOCATION
from tqdm.auto import tqdm


class CustomTokenizer(nn.Module):
    def __init__(self, hidden_size=1024, input_size=768, output_size=10000, version=0):
        super(CustomTokenizer, self).__init__()
        next_size = input_size
        if version == 0:
            self.lstm = nn.LSTM(input_size, hidden_size, 2, batch_first=True)
            next_size = hidden_size
        if version == 1:
            self.lstm = nn.LSTM(input_size, hidden_size, 2, batch_first=True)
            self.intermediate = nn.Linear(hidden_size, 4096)
            next_size = 4096

        self.fc = nn.Linear(next_size, output_size)
        self.softmax = nn.LogSoftmax(dim=1)
        self.optimizer: optim.Optimizer = None
        self.lossfunc = nn.CrossEntropyLoss()
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.version = version

    def forward(self, x):
        x, _ = self.lstm(x)
        if self.version == 1:
            x = self.intermediate(x)
        x = self.fc(x)
        x = self.softmax(x)
        return x

    @torch.no_grad()
    def get_token(self, x):
        """
        Used to get the token for the first
        :param x: An array with shape (N, input_size) where N is a whole number greater or equal to 1, and input_size is the input size used when creating the model.
        :return: An array with shape (N,) where N is the same as N from the input. Every number in the array is a whole number in range 0...output_size - 1 where output_size is the output size used when creating the model.
        """
        return torch.argmax(self(x), dim=1)

    def prepare_training(self):
        self.optimizer = optim.Adam(self.parameters(), 0.001)

    def train_step(self, x_train, y_train, log_loss=False):
        # y_train = y_train[:-1]
        # y_train = y_train[1:]

        optimizer = self.optimizer
        lossfunc = self.lossfunc
        # Zero the gradients
        self.zero_grad()

        # Forward pass
        y_pred = self(x_train)

        y_train_len = len(y_train)
        y_pred_len = y_pred.shape[0]

        if y_train_len > y_pred_len:
            diff = y_train_len - y_pred_len
            y_train = y_train[diff:]
        elif y_train_len < y_pred_len:
            diff = y_pred_len - y_train_len
            y_pred = y_pred[:-diff, :]

        y_train_hot = torch.zeros(len(y_train), self.output_size)
        y_train_hot[range(len(y_train)), y_train] = 1
        y_train_hot = y_train_hot.to('cuda')

        # Calculate the loss
        loss = lossfunc(y_pred, y_train_hot)

        # Print loss
        if log_loss:
            print('Loss', loss.item())

        # Backward pass
        loss.backward()

        # Update the weights
        optimizer.step()

    def save(self, path):
        info_path = '.'.join(os.path.basename(path).split('.')[:-1]) + '/.info'
        torch.save(self.state_dict(), path)
        data_from_model = Data(self.input_size, self.hidden_size, self.output_size, self.version)
        with ZipFile(path, 'a') as model_zip:
            model_zip.writestr(info_path, data_from_model.save())
            model_zip.close()

    @staticmethod
    def load_from_checkpoint(path, map_location: MAP_LOCATION = None):
        old = True
        with ZipFile(path) as model_zip:
            filesMatch = [file for file in model_zip.namelist() if file.endswith('/.info')]
            file = filesMatch[0] if filesMatch else None
            if file:
                old = False
                print(f"Loading Custom Hubert Tokenizer {path}")
                data_from_model = Data.load(model_zip.read(file).decode('utf-8'))
            model_zip.close()
        if old:
            model = CustomTokenizer()
        else:
            model = CustomTokenizer(data_from_model.hidden_size, data_from_model.input_size, data_from_model.output_size, data_from_model.version)
        model.load_state_dict(torch.load(path))
        if map_location:
            model = model.to(map_location)
        return model



class Data:
    input_size: int
    hidden_size: int
    output_size: int
    version: int

    def __init__(self, input_size=768, hidden_size=1024, output_size=10000, version=0):
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.output_size = output_size
        self.version = version

    @staticmethod
    def load(string):
        data = json.loads(string)
        return Data(data['input_size'], data['hidden_size'], data['output_size'], data['version'])

    def save(self):
        data = {
            'input_size': self.input_size,
            'hidden_size': self.hidden_size,
            'output_size': self.output_size,
            'version': self.version,
        }
        return json.dumps(data)


def auto_train(data_path, save_path='model.pth', load_model: str | None = None, save_epochs=1, max_epochs=14):
    data_x, data_y = [], []

    if load_model and os.path.isfile(load_model):
        print('Loading model from', load_model)
        model_training = CustomTokenizer.load_from_checkpoint(load_model, 'cuda')
    else:
        print('Creating new model.')
        model_training = CustomTokenizer(version=1).to('cuda')  # Settings for the model to run without lstm
    save_path = os.path.join(data_path, save_path)
    base_save_path = '.'.join(save_path.split('.')[:-1])

    sem_string = '_semantic.npy'
    feat_string = '_semantic_features.npy'

    ready = os.path.join(data_path, 'ready')
    for input_file in os.listdir(ready):
        full_path = os.path.join(ready, input_file)
        if input_file.endswith(sem_string):
            data_y.append(numpy.load(full_path))
        elif input_file.endswith(feat_string):
            data_x.append(numpy.load(full_path))
    model_training.prepare_training()

    epoch = 1
    with tqdm(total=((len(data_x) * len(data_y)) / 50) * save_epochs) as pbar1:
        while epoch <= max_epochs:
            for i in range(save_epochs):
                j = 0
                for x, y in zip(data_x, data_y):
                    model_training.train_step(torch.tensor(x).to('cuda'), torch.tensor(y).to('cuda'), j % 50 == 0)  # Print loss every 50 steps
                    j += 1
                    pbar1.update()

            save_p = save_path
            save_p_2 = f'{base_save_path}_epoch_{epoch}.pth'
            model_training.save(save_p)
            model_training.save(save_p_2)
            print(f'Epoch {epoch} completed')
            epoch += 1
        print(f'Done training for {max_epochs} epochs!')