Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from langchain_community.chat_models import ChatOpenAI | |
from langchain.chains.retrieval_qa.base import RetrievalQA | |
from langchain_community.embeddings import OpenAIEmbeddings | |
from langchain.schema import HumanMessage, SystemMessage | |
from langchain_community.document_loaders import DirectoryLoader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
from langchain_community.embeddings import OpenAIEmbeddings | |
from langchain_community.vectorstores import Chroma | |
import requests | |
from langchain_core.prompts import PromptTemplate | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
import gradio as gr | |
from openai import OpenAI | |
import os | |
TOKEN = os.getenv("HF_TOKEN") | |
def load_embedding_mode(): | |
# embedding_model_dict = {"m3e-base": "/home/xiongwen/m3e-base"} | |
encode_kwargs = {"normalize_embeddings": False} | |
model_kwargs = {"device": 'cpu'} | |
return HuggingFaceEmbeddings(model_name="BAAI/bge-m3", | |
model_kwargs=model_kwargs, | |
encode_kwargs=encode_kwargs) | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=TOKEN, | |
) | |
def qwen_api(user_message, top_p=0.9,temperature=0.7, system_message='', max_tokens=1024, gradio_history=[]): | |
history = [] | |
if gradio_history: | |
for message in history: | |
if message: | |
history.append({"role": "user", "content": message[0]}) | |
history.append({"role": "assistant", "content": message[1]}) | |
if system_message!='': | |
history.append({'role': 'system', 'content': system_message}) | |
history.append({"role": "user", "content": user_message}) | |
response = "" | |
for message in client.chat.completions.create( | |
model="meta-llama/Meta-Llama-3-8B-Instruct", | |
# model="Qwen/Qwen1.5-4B-Chat", | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
messages=history, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
return response | |
os.environ["OPENAI_API_BASE"] = "https://api-inference.huggingface.co/v1/" | |
os.environ["OPENAI_API_KEY"] = TOKEN | |
embedding = load_embedding_mode() | |
db = Chroma(persist_directory='./VecterStore2_512_txt/VecterStore2_512_txt', embedding_function=embedding) | |
prompt_template = """ | |
{context} | |
The above content is a form of biological background knowledge. Please answer the questions according to the above content. | |
Question: {question} | |
Please be sure to answer the questions according to the background knowledge and attach the doi number of the information source when answering. | |
Answer in English:""" | |
PROMPT = PromptTemplate( | |
template=prompt_template, input_variables=["context", "question"] | |
) | |
chain_type_kwargs = {"prompt": PROMPT} | |
retriever = db.as_retriever() | |
def langchain_chat(message, temperature, top_p, max_tokens): | |
llm = ChatOpenAI( | |
model="meta-llama/Meta-Llama-3-8B-Instruct", | |
# model="Qwen/Qwen1.5-4B-Chat", | |
temperature=temperature, | |
top_p=top_p, | |
max_tokens=max_tokens) | |
qa = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=retriever, | |
chain_type_kwargs=chain_type_kwargs, | |
return_source_documents=True | |
) | |
response = qa.invoke(message)['result'] | |
return response | |
def chat( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
if len(history) == 0: | |
response = langchain_chat(message, temperature, top_p, max_tokens) | |
else: | |
response = qwen_api(message, gradio_history=history, max_tokens=max_tokens, top_p=top_p, temperature=temperature) | |
print(response) | |
yield response | |
return response | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat.completions.create( | |
model="meta-llama/Meta-Llama-3-8B-Instruct", | |
# model="Qwen/Qwen1.5-4B-Chat", | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
messages=messages, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
chatbot = gr.Chatbot(height=600) | |
demo = gr.ChatInterface( | |
fn=chat, | |
fill_height=True, | |
chatbot=chatbot, | |
additional_inputs=[ | |
gr.Textbox(label="System message"), | |
gr.Slider(minimum=1, maximum=1024, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |