Spaces:
kadirnar
/
Running on Zero

File size: 7,020 Bytes
a9289c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
"""Compute depth maps for images in the input folder.
"""
import os
import glob
import torch
import cv2
import argparse

import util.io

from torchvision.transforms import Compose

from dpt.models import DPTDepthModel
from dpt.midas_net import MidasNet_large
from dpt.transforms import Resize, NormalizeImage, PrepareForNet

#from util.misc import visualize_attention


def run(input_path, output_path, model_path, model_type="dpt_hybrid", optimize=True):
    """Run MonoDepthNN to compute depth maps.

    Args:
        input_path (str): path to input folder
        output_path (str): path to output folder
        model_path (str): path to saved model
    """
    print("initialize")

    # select device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("device: %s" % device)

    # load network
    if model_type == "dpt_large":  # DPT-Large
        net_w = net_h = 384
        model = DPTDepthModel(
            path=model_path,
            backbone="vitl16_384",
            non_negative=True,
            enable_attention_hooks=False,
        )
        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
    elif model_type == "dpt_hybrid":  # DPT-Hybrid
        net_w = net_h = 384
        model = DPTDepthModel(
            path=model_path,
            backbone="vitb_rn50_384",
            non_negative=True,
            enable_attention_hooks=False,
        )
        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
    elif model_type == "dpt_hybrid_kitti":
        net_w = 1216
        net_h = 352

        model = DPTDepthModel(
            path=model_path,
            scale=0.00006016,
            shift=0.00579,
            invert=True,
            backbone="vitb_rn50_384",
            non_negative=True,
            enable_attention_hooks=False,
        )

        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
    elif model_type == "dpt_hybrid_nyu":
        net_w = 640
        net_h = 480

        model = DPTDepthModel(
            path=model_path,
            scale=0.000305,
            shift=0.1378,
            invert=True,
            backbone="vitb_rn50_384",
            non_negative=True,
            enable_attention_hooks=False,
        )

        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
    elif model_type == "midas_v21":  # Convolutional model
        net_w = net_h = 384

        model = MidasNet_large(model_path, non_negative=True)
        normalization = NormalizeImage(
            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
        )
    else:
        assert (
            False
        ), f"model_type '{model_type}' not implemented, use: --model_type [dpt_large|dpt_hybrid|dpt_hybrid_kitti|dpt_hybrid_nyu|midas_v21]"

    transform = Compose(
        [
            Resize(
                net_w,
                net_h,
                resize_target=None,
                keep_aspect_ratio=True,
                ensure_multiple_of=32,
                resize_method="minimal",
                image_interpolation_method=cv2.INTER_CUBIC,
            ),
            normalization,
            PrepareForNet(),
        ]
    )

    model.eval()

    if optimize == True and device == torch.device("cuda"):
        model = model.to(memory_format=torch.channels_last)
        model = model.half()

    model.to(device)

    # get input
    img_names = glob.glob(os.path.join(input_path, "*"))
    num_images = len(img_names)

    # create output folder
    os.makedirs(output_path, exist_ok=True)

    print("start processing")
    for ind, img_name in enumerate(img_names):
        if os.path.isdir(img_name):
            continue

        print("  processing {} ({}/{})".format(img_name, ind + 1, num_images))
        # input

        img = util.io.read_image(img_name)

        if args.kitti_crop is True:
            height, width, _ = img.shape
            top = height - 352
            left = (width - 1216) // 2
            img = img[top : top + 352, left : left + 1216, :]

        img_input = transform({"image": img})["image"]

        # compute
        with torch.no_grad():
            sample = torch.from_numpy(img_input).to(device).unsqueeze(0)

            if optimize == True and device == torch.device("cuda"):
                sample = sample.to(memory_format=torch.channels_last)
                sample = sample.half()

            prediction = model.forward(sample)
            prediction = (
                torch.nn.functional.interpolate(
                    prediction.unsqueeze(1),
                    size=img.shape[:2],
                    mode="bicubic",
                    align_corners=False,
                )
                .squeeze()
                .cpu()
                .numpy()
            )

            if model_type == "dpt_hybrid_kitti":
                prediction *= 256

            if model_type == "dpt_hybrid_nyu":
                prediction *= 1000.0

        filename = os.path.join(
            output_path, os.path.splitext(os.path.basename(img_name))[0]
        )
        util.io.write_depth(filename, prediction, bits=2, absolute_depth=args.absolute_depth)

    print("finished")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "-i", "--input_path", default="input", help="folder with input images"
    )

    parser.add_argument(
        "-o",
        "--output_path",
        default="output_monodepth",
        help="folder for output images",
    )

    parser.add_argument(
        "-m", "--model_weights", default=None, help="path to model weights"
    )

    parser.add_argument(
        "-t",
        "--model_type",
        default="dpt_hybrid",
        help="model type [dpt_large|dpt_hybrid|midas_v21]",
    )

    parser.add_argument("--kitti_crop", dest="kitti_crop", action="store_true")
    parser.add_argument("--absolute_depth", dest="absolute_depth", action="store_true")

    parser.add_argument("--optimize", dest="optimize", action="store_true")
    parser.add_argument("--no-optimize", dest="optimize", action="store_false")

    parser.set_defaults(optimize=True)
    parser.set_defaults(kitti_crop=False)
    parser.set_defaults(absolute_depth=False)

    args = parser.parse_args()

    default_models = {
        "midas_v21": "weights/midas_v21-f6b98070.pt",
        "dpt_large": "weights/dpt_large-midas-2f21e586.pt",
        "dpt_hybrid": "weights/dpt_hybrid-midas-501f0c75.pt",
        "dpt_hybrid_kitti": "weights/dpt_hybrid_kitti-cb926ef4.pt",
        "dpt_hybrid_nyu": "weights/dpt_hybrid_nyu-2ce69ec7.pt",
    }

    if args.model_weights is None:
        args.model_weights = default_models[args.model_type]

    # set torch options
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.benchmark = True

    # compute depth maps
    run(
        args.input_path,
        args.output_path,
        args.model_weights,
        args.model_type,
        args.optimize,
    )