jx-yang commited on
Commit
d4a8940
β€’
1 Parent(s): f5be2dd

<ADD> update app

Browse files
Files changed (3) hide show
  1. .gitignore +6 -0
  2. app.py +55 -12
  3. example_sets/sst2/sample.pkl +14 -10
.gitignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ .vscode
2
+
3
+ # Byte-compiled / optimized / DLL files
4
+ __pycache__/
5
+ *.py[cod]
6
+ *$py.class
app.py CHANGED
@@ -15,7 +15,6 @@ from tasks.loader import TokenizedForMCRightPad
15
 
16
  DISPLAY_MAPPING = {
17
  "sst2": {"positive": "Pos", "negative": "Neg"},
18
- "trec": {},
19
  }
20
 
21
 
@@ -78,13 +77,21 @@ def process_once(dataset_name, exemplar_str, forward_steps, raw_data):
78
  generated_info.extend(zipped_logprobs)
79
 
80
  all_predicted = []
 
81
  for idx, (data, choice_info) in enumerate(zip(processed_data, generated_info)):
82
  merged_choice_info = task_agent.merge_choice_info(choice_info)
83
  merged_predictions_idx = task_agent.choice_info_to_predictions(merged_choice_info)["lm_log_p"]
84
  predicted = task_agent.CHOICES[merged_predictions_idx]
85
  ground_truth = task_agent.CHOICES[data["answer_idx"]]
86
- res = f"{DISPLAY_MAPPING[dataset_name][predicted]}{'βœ…' if predicted == ground_truth else '❌'}"
 
 
 
 
 
 
87
  all_predicted.append(res)
 
88
  return all_predicted
89
 
90
 
@@ -102,7 +109,10 @@ def button_pressed(prev_state):
102
  current_output = process_once(dataset_name, exemplar_str, forward_steps, raw_data)
103
 
104
  t_prev = transpose(prev_table_data)
105
- t_prev.append([f"T={forward_steps}"] + current_output)
 
 
 
106
  updated_table_data = transpose(t_prev)
107
 
108
  ret = [
@@ -113,7 +123,7 @@ def button_pressed(prev_state):
113
  "step": forward_steps,
114
  "table_data": updated_table_data,
115
  },
116
- f"Step + 2, Now: {forward_steps}",
117
  updated_table_data,
118
  ]
119
  return ret
@@ -138,37 +148,70 @@ if __name__ == "__main__":
138
  with task_root.joinpath("demos.txt").open("r") as f:
139
  demos = f.read()
140
  with task_root.joinpath("sample.pkl").open("r") as f:
141
- data = json.load(f)
142
- raw_data = [data[str(i)] for i in range(len(data))]
 
 
 
 
 
143
 
144
- css = """ #the-table > div > div > div > table > thead {display: none}"""
 
 
 
 
 
 
 
 
 
 
 
 
145
 
146
  title = "πŸ€” Iterative Forward Tuning Boosts In-context Learning in Language Models"
147
  demo = gr.Blocks(css=css, title="πŸ€”Deep-Thinking")
148
  with demo:
149
  gr.Markdown(f"<h1 style='text-align: center; margin-bottom: 1rem'>{title}</h1>")
 
 
 
 
 
 
 
 
 
150
  with gr.Tab("SST-2"):
151
  mapping = ["negative", "positive"]
152
 
153
- init_columns = [[e["sentence"], f"*{DISPLAY_MAPPING['sst2'][mapping[e['label']]]}*"] for e in raw_data]
 
 
 
 
 
 
154
  state = gr.State(
155
  {
156
  "dataset_name": "sst2",
157
  "exemplar_str": demos,
158
  "raw_data": raw_data,
159
- "step": 0,
160
- "table_data": [["**Test Input**", "**Golden**"], *init_columns],
161
  }
162
  )
163
 
164
  prompt = gr.Textbox(label="Demonstrations (Prompt template formatted)", value=demos)
 
 
165
  big_table = gr.DataFrame(
166
- value=[["**Test Input**", "**Golden**"], *init_columns],
167
  elem_id="the-table",
168
  datatype=["markdown"] * 50,
169
  headers=None,
170
  )
171
- step_button = gr.Button("Step + 2, Now: 0")
172
  step_button.click(button_pressed, inputs=[state], outputs=[state, step_button, big_table])
173
 
174
  demo.launch(server_name="0.0.0.0")
 
15
 
16
  DISPLAY_MAPPING = {
17
  "sst2": {"positive": "Pos", "negative": "Neg"},
 
18
  }
19
 
20
 
 
77
  generated_info.extend(zipped_logprobs)
78
 
79
  all_predicted = []
80
+ num_correct = 0
81
  for idx, (data, choice_info) in enumerate(zip(processed_data, generated_info)):
82
  merged_choice_info = task_agent.merge_choice_info(choice_info)
83
  merged_predictions_idx = task_agent.choice_info_to_predictions(merged_choice_info)["lm_log_p"]
84
  predicted = task_agent.CHOICES[merged_predictions_idx]
85
  ground_truth = task_agent.CHOICES[data["answer_idx"]]
86
+
87
+ res = f"{DISPLAY_MAPPING[dataset_name][predicted]}"
88
+ if predicted == ground_truth:
89
+ res += " βœ…"
90
+ num_correct += 1
91
+ else:
92
+ res += " ❌"
93
  all_predicted.append(res)
94
+ all_predicted.append(f"{100*num_correct / len(all_predicted):.2f}%")
95
  return all_predicted
96
 
97
 
 
109
  current_output = process_once(dataset_name, exemplar_str, forward_steps, raw_data)
110
 
111
  t_prev = transpose(prev_table_data)
112
+ if forward_steps == 1:
113
+ t_prev.append(["**ICL**"] + current_output)
114
+ else:
115
+ t_prev.append([f"**Step={forward_steps}**"] + current_output)
116
  updated_table_data = transpose(t_prev)
117
 
118
  ret = [
 
123
  "step": forward_steps,
124
  "table_data": updated_table_data,
125
  },
126
+ f"Click here to train LLM ! Now Step: {forward_steps}",
127
  updated_table_data,
128
  ]
129
  return ret
 
148
  with task_root.joinpath("demos.txt").open("r") as f:
149
  demos = f.read()
150
  with task_root.joinpath("sample.pkl").open("r") as f:
151
+ raw_data = json.load(f)
152
+
153
+ icl_result = process_once(dataset_name, demos, 1, raw_data)
154
+
155
+ text = """We utilize a Large Language Model (LLM) to perform in-context learning (ICL) for sentiment classification of movie reviews.
156
+
157
+ Taking the following two labeled examples as demonstrations, we predict the sentiment of the subsequent test input.
158
 
159
+ Directly employing ICL results in lower prediction accuracy. However, in our proposed approach, **Deep-Thinking**, we repeatedly apply **Forward Tuning**, leading to improved accuracy of the model."""
160
+
161
+ css = """
162
+ #the-table { overflow: auto; }
163
+ #the-table > div:nth-child(2) { margin: auto; width: fit-content; }
164
+ #the-table > div > div > div > table { width: auto; margin: 0; white-space: normal; }
165
+ #the-table > div > div > div > table > thead {display: none}
166
+ #the-table > div > div > div > table > tbody > tr:last-child {background-color: beige}
167
+ #the-table > div > div > div > table > tbody > tr:first-child {background-color: lightgray}
168
+ #the-table > div > div > div > table > tbody > tr > td:first-child {min-width: 300px;}
169
+ #the-table > div > div > div > table > tbody > tr > td:not(:first-child) {white-space: nowrap; padding: 0 2px; }
170
+ #the-text { font-size: large; }
171
+ """
172
 
173
  title = "πŸ€” Iterative Forward Tuning Boosts In-context Learning in Language Models"
174
  demo = gr.Blocks(css=css, title="πŸ€”Deep-Thinking")
175
  with demo:
176
  gr.Markdown(f"<h1 style='text-align: center; margin-bottom: 1rem'>{title}</h1>")
177
+ gr.Markdown(
178
+ """
179
+ <h2 style='text-align: center; margin-bottom: 1rem'>
180
+ <a href='https://arxiv.org/abs/2305.13016' target="_blank" style='text-decoration: none'>[Paper]</a>
181
+ <a href='https://arxiv.org/abs/2305.13016' target="_blank" style='text-decoration: none'>[Code]</a>
182
+ </h2>"""
183
+ )
184
+
185
+ gr.Markdown(text, elem_id="the-text")
186
  with gr.Tab("SST-2"):
187
  mapping = ["negative", "positive"]
188
 
189
+ init_columns = [[e["sentence"]] for e in raw_data]
190
+
191
+ init_table_result = [["**Test Input**"], *init_columns, ["**Accuracy**"]]
192
+ init_table_result = transpose(init_table_result)
193
+ init_table_result.append(["**ICL**"] + icl_result)
194
+ init_table_result = transpose(init_table_result)
195
+
196
  state = gr.State(
197
  {
198
  "dataset_name": "sst2",
199
  "exemplar_str": demos,
200
  "raw_data": raw_data,
201
+ "step": 1,
202
+ "table_data": init_table_result,
203
  }
204
  )
205
 
206
  prompt = gr.Textbox(label="Demonstrations (Prompt template formatted)", value=demos)
207
+ gr.Markdown("<h2 style='text-align: center; margin-bottom: 1rem'>πŸ‘‡ Run forward tuning once !</h2>")
208
+ step_button = gr.Button("Click here to train LLM ! Now Step: 1")
209
  big_table = gr.DataFrame(
210
+ value=init_table_result,
211
  elem_id="the-table",
212
  datatype=["markdown"] * 50,
213
  headers=None,
214
  )
 
215
  step_button.click(button_pressed, inputs=[state], outputs=[state, step_button, big_table])
216
 
217
  demo.launch(server_name="0.0.0.0")
example_sets/sst2/sample.pkl CHANGED
@@ -1,10 +1,14 @@
1
- {
2
- "0": { "sentence": "the cold turkey would 've been a far better title . ", "label": 0, "idx": 57 },
3
- "1": { "sentence": "it 's a cookie-cutter movie , a cut-and-paste job . ", "label": 0, "idx": 28 },
4
- "2": { "sentence": "a solid film ... but more conscientious than it is truly stirring . ", "label": 1, "idx": 143 },
5
- "3": { "sentence": "it 's slow -- very , very slow . ", "label": 0, "idx": 4 },
6
- "4": { "sentence": "filmmakers who can deftly change moods are treasures and even marvels . ", "label": 1, "idx": 679 },
7
- "5": { "sentence": "it all adds up to good fun . ", "label": 1, "idx": 393 },
8
- "6": { "sentence": "i am sorry that i was unable to get the full brunt of the comedy . ", "label": 0, "idx": 423 },
9
- "7": { "sentence": "hilariously inept and ridiculous . ", "label": 1, "idx": 112 }
10
- }
 
 
 
 
 
1
+ [
2
+ {"sentence":"... the movie is just a plain old monster . ","label":0,"idx":18},
3
+ {"sentence": "overall very good for what it 's trying to do . ", "label": 1, "idx": 150},
4
+ {"sentence": "it has all the excitement of eating oatmeal . ", "label": 0, "idx": 527},
5
+ {"sentence": "and when you 're talking about a slapstick comedy , that 's a pretty big problem . ", "label": 0, "idx": 748},
6
+ {"sentence": "and that 's a big part of why we go to the movies . ", "label": 1, "idx": 505},
7
+ {"sentence": "a good piece of work more often than not . ", "label": 1, "idx": 424},
8
+ {"sentence": "the cold turkey would 've been a far better title . ", "label": 0, "idx": 57},
9
+ {"sentence": "it 's slow -- very , very slow . ", "label": 0, "idx": 4},
10
+ {"sentence": "it 's a cookie-cutter movie , a cut-and-paste job . ", "label": 0, "idx": 28},
11
+ {"sentence": "i am sorry that i was unable to get the full brunt of the comedy . ", "label": 0, "idx": 423},
12
+ {"sentence": "filmmakers who can deftly change moods are treasures and even marvels . ", "label": 1, "idx": 679},
13
+ {"sentence": "a solid film ... but more conscientious than it is truly stirring . ", "label": 1, "idx": 143}
14
+ ]