File size: 6,353 Bytes
dcaa7a1
 
 
e8cf757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcaa7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85d85d8
dcaa7a1
 
 
 
 
 
 
 
85d85d8
dcaa7a1
 
 
 
 
 
 
 
 
85d85d8
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139



def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2):
    import time
    from concurrent.futures import ThreadPoolExecutor
    from request_llm.bridge_chatgpt import predict_no_ui_long_connection
    # 用户反馈
    chatbot.append([inputs_show_user, ""]); msg = '正常'
    yield chatbot, [], msg
    executor = ThreadPoolExecutor(max_workers=16)
    mutable = ["", time.time()]
    future = executor.submit(lambda:
        predict_no_ui_long_connection(inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable)
    )
    while True:
        # yield一次以刷新前端页面
        time.sleep(refresh_interval)
        # “喂狗”(看门狗)
        mutable[1] = time.time()
        if future.done(): break
        chatbot[-1] = [chatbot[-1][0], mutable[0]]; msg = "正常"
        yield chatbot, [], msg
    return future.result()




def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=10, scroller_max_len=30):
    import time
    from concurrent.futures import ThreadPoolExecutor
    from request_llm.bridge_chatgpt import predict_no_ui_long_connection
    assert len(inputs_array) == len(history_array)
    assert len(inputs_array) == len(sys_prompt_array)
    executor = ThreadPoolExecutor(max_workers=max_workers)
    n_frag = len(inputs_array)
    # 用户反馈
    chatbot.append(["请开始多线程操作。", ""]); msg = '正常'
    yield chatbot, [], msg
    # 异步原子
    mutable = [["", time.time()] for _ in range(n_frag)]
    def _req_gpt(index, inputs, history, sys_prompt):
        gpt_say = predict_no_ui_long_connection(
            inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[index]
        )
        return gpt_say
    # 异步任务开始
    futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
    cnt = 0
    while True:
        # yield一次以刷新前端页面
        time.sleep(refresh_interval); cnt += 1
        worker_done = [h.done() for h in futures]
        if all(worker_done): executor.shutdown(); break
        # 更好的UI视觉效果
        observe_win = []
        # 每个线程都要“喂狗”(看门狗)
        for thread_index, _ in enumerate(worker_done): mutable[thread_index][1] = time.time()
        # 在前端打印些好玩的东西
        for thread_index, _ in enumerate(worker_done): 
            print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
                replace('\n','').replace('```','...').replace(' ','.').replace('<br/>','.....').replace('$','.')+"`... ]"
            observe_win.append(print_something_really_funny)
        stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(worker_done, observe_win)])
        chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1))]; msg = "正常"
        yield chatbot, [], msg
    # 异步任务结束
    gpt_response_collection = []
    for inputs_show_user, f in zip(inputs_show_user_array, futures):
        gpt_res = f.result()
        gpt_response_collection.extend([inputs_show_user, gpt_res])
    return gpt_response_collection




def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
    def cut(txt_tocut, must_break_at_empty_line): # 递归
        if get_token_fn(txt_tocut) <= limit:
            return [txt_tocut]
        else:
            lines = txt_tocut.split('\n')
            estimated_line_cut = limit / get_token_fn(txt_tocut)  * len(lines)
            estimated_line_cut = int(estimated_line_cut)
            for cnt in reversed(range(estimated_line_cut)):
                if must_break_at_empty_line: 
                    if lines[cnt] != "": continue
                print(cnt)
                prev = "\n".join(lines[:cnt])
                post = "\n".join(lines[cnt:])
                if get_token_fn(prev) < limit: break
            if cnt == 0:
                print('what the fuck ?')
                raise RuntimeError("存在一行极长的文本!")
            # print(len(post))
            # 列表递归接龙
            result = [prev]
            result.extend(cut(post, must_break_at_empty_line))
            return result
    try:
        return cut(txt, must_break_at_empty_line=True)
    except RuntimeError:
        return cut(txt, must_break_at_empty_line=False)

def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
    def cut(txt_tocut, must_break_at_empty_line): # 递归
        if get_token_fn(txt_tocut) <= limit:
            return [txt_tocut]
        else:
            lines = txt_tocut.split('\n')
            estimated_line_cut = limit / get_token_fn(txt_tocut)  * len(lines)
            estimated_line_cut = int(estimated_line_cut)
            cnt = 0
            for cnt in reversed(range(estimated_line_cut)):
                if must_break_at_empty_line: 
                    if lines[cnt] != "": continue
                print(cnt)
                prev = "\n".join(lines[:cnt])
                post = "\n".join(lines[cnt:])
                if get_token_fn(prev) < limit: break
            if cnt == 0:
                # print('what the fuck ? 存在一行极长的文本!')
                raise RuntimeError("存在一行极长的文本!")
            # print(len(post))
            # 列表递归接龙
            result = [prev]
            result.extend(cut(post, must_break_at_empty_line))
            return result
    try:
        return cut(txt, must_break_at_empty_line=True)
    except RuntimeError:
        try:
            return cut(txt, must_break_at_empty_line=False)
        except RuntimeError:
            # 这个中文的句号是故意的,作为一个标识而存在
            res = cut(txt.replace('.', '。\n'), must_break_at_empty_line=False)
            return [r.replace('。\n', '.') for r in res]