File size: 9,139 Bytes
e8cf757
 
 
dcaa7a1
e8cf757
dcaa7a1
e8cf757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcaa7a1
 
 
 
 
 
 
85d85d8
dcaa7a1
 
 
85d85d8
 
 
 
 
dcaa7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85d85d8
dcaa7a1
 
85d85d8
dcaa7a1
 
 
 
 
 
85d85d8
dcaa7a1
 
 
 
 
 
 
 
079916f
dcaa7a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85d85d8
dcaa7a1
 
85d85d8
 
 
dcaa7a1
 
 
 
 
85d85d8
e8cf757
dcaa7a1
85d85d8
 
 
dcaa7a1
 
 
85d85d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d32a52c
 
e8cf757
 
 
85d85d8
 
 
e8cf757
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from toolbox import CatchException, report_execption, write_results_to_file
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency

def read_and_clean_pdf_text(fp):
    """
    **输入参数说明**
    - `fp`:需要读取和清理文本的pdf文件路径

    **输出参数说明**
    - `meta_txt`:清理后的文本内容字符串
    - `page_one_meta`:第一页清理后的文本内容列表

    **函数功能**
    读取pdf文件并清理其中的文本内容,清理规则包括:
    - 提取所有块元的文本信息,并合并为一个字符串
    - 去除短块(字符数小于100)并替换为回车符
    - 清理多余的空行
    - 合并小写字母开头的段落块并替换为空格
    - 清除重复的换行
    - 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔
    """
    import fitz, re
    import numpy as np
    # file_content = ""
    with fitz.open(fp) as doc:
        meta_txt = []
        meta_font = []
        for index, page in enumerate(doc):
            # file_content += page.get_text()
            text_areas = page.get_text("dict")  # 获取页面上的文本信息

            # 块元提取                           for each word segment with in line                       for each line         cross-line words                          for each block
            meta_txt.extend( [   " ".join(["".join(     [wtf['text'] for wtf in l['spans'] ])          for l in t['lines']   ]).replace('- ','')               for t in text_areas['blocks'] if 'lines' in t])
            meta_font.extend([   np.mean( [     np.mean([wtf['size'] for wtf in l['spans'] ])          for l in t['lines']   ])                                for t in text_areas['blocks'] if 'lines' in t])
            if index==0:
                page_one_meta = [" ".join(["".join(     [wtf['text'] for wtf in l['spans'] ])          for l in t['lines']   ]).replace('- ','')               for t in text_areas['blocks'] if 'lines' in t]

        def 把字符太少的块清除为回车(meta_txt):
            for index, block_txt in enumerate(meta_txt):
                if len(block_txt) < 100:
                    meta_txt[index] = '\n'
            return meta_txt
        meta_txt = 把字符太少的块清除为回车(meta_txt)

        def 清理多余的空行(meta_txt):
            for index in reversed(range(1, len(meta_txt))):
                if meta_txt[index] == '\n' and meta_txt[index-1] == '\n':
                    meta_txt.pop(index)
            return meta_txt
        meta_txt = 清理多余的空行(meta_txt)

        def 合并小写开头的段落块(meta_txt):
            def starts_with_lowercase_word(s):
                pattern = r"^[a-z]+"
                match = re.match(pattern, s)
                if match:
                    return True
                else:
                    return False
            for _ in range(100):
                for index, block_txt in enumerate(meta_txt):
                    if starts_with_lowercase_word(block_txt):
                        if meta_txt[index-1]!='\n': meta_txt[index-1] += ' '
                        else: meta_txt[index-1] = ''
                        meta_txt[index-1] += meta_txt[index]
                        meta_txt[index] = '\n'
            return meta_txt
        meta_txt = 合并小写开头的段落块(meta_txt)
        meta_txt = 清理多余的空行(meta_txt)

        meta_txt = '\n'.join(meta_txt)
        # 清除重复的换行
        for _ in range(5):
            meta_txt = meta_txt.replace('\n\n','\n')

        # 换行 -> 双换行
        meta_txt = meta_txt.replace('\n', '\n\n')

    return meta_txt, page_one_meta

@CatchException
def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt, WEB_PORT):
    import glob
    import os

    # 基本信息:功能、贡献者
    chatbot.append([
        "函数插件功能?",
        "批量总结PDF文档。函数插件贡献者: Binary-Husky(二进制哈士奇)"])
    yield chatbot, history, '正常'

    # 尝试导入依赖,如果缺少依赖,则给出安装建议
    try:
        import fitz, tiktoken
    except:
        report_execption(chatbot, history,
                         a=f"解析项目: {txt}",
                         b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken```。")
        yield chatbot, history, '正常'
        return

    # 清空历史,以免输入溢出
    history = []

    # 检测输入参数,如没有给定输入参数,直接退出
    if os.path.exists(txt):
        project_folder = txt
    else:
        if txt == "":
            txt = '空空如也的输入栏'
        report_execption(chatbot, history,
                         a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
        yield chatbot, history, '正常'
        return

    # 搜索需要处理的文件清单
    file_manifest = [f for f in glob.glob(
        f'{project_folder}/**/*.pdf', recursive=True)]

    # 如果没找到任何文件
    if len(file_manifest) == 0:
        report_execption(chatbot, history,
                         a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}")
        yield chatbot, history, '正常'
        return

    # 开始正式执行任务
    yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt)




def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt):
    import time
    import glob
    import os
    import fitz
    import tiktoken
    TOKEN_LIMIT_PER_FRAGMENT = 1600
    generated_conclusion_files = []
    for index, fp in enumerate(file_manifest):
        # 读取PDF文件
        file_content, page_one = read_and_clean_pdf_text(fp)
        # 递归地切割PDF文件
        from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
        enc = tiktoken.get_encoding("gpt2")
        get_token_num = lambda txt: len(enc.encode(txt))
        # 分解文本
        paper_fragments    = breakdown_txt_to_satisfy_token_limit_for_pdf(
            txt=file_content,  get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
        page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
            txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
        # 为了更好的效果,我们剥离Introduction之后的部分
        paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
        # 单线,获取文章meta信息
        paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
            inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}", 
            inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。", 
            top_p=top_p, temperature=temperature,
            chatbot=chatbot, history=[],
            sys_prompt="Your job is to collect information from materials。",
        )
        # 多线,翻译
        gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
            inputs_array = [f"以下是你需要翻译的文章段落:\n{frag}" for frag in paper_fragments],
            inputs_show_user_array = [f""  for _ in paper_fragments],
            top_p=top_p, temperature=temperature,
            chatbot=chatbot,
            history_array=[[paper_meta] for _ in paper_fragments],
            sys_prompt_array=["请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments],
            max_workers=16 # OpenAI所允许的最大并行过载
        )

        final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n']
        final.extend(gpt_response_collection)
        create_report_file_name = f"{os.path.basename(fp)}.trans.md"
        res = write_results_to_file(final, file_name=create_report_file_name)
        generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}')
        chatbot.append((f"{fp}完成了吗?", res)); msg = "完成"
        yield chatbot, history, msg

    # 准备文件的下载
    import shutil
    for pdf_path in generated_conclusion_files:
        # 重命名文件
        rename_file = f'./gpt_log/总结论文-{os.path.basename(pdf_path)}'
        if os.path.exists(rename_file): os.remove(rename_file)
        shutil.copyfile(pdf_path, rename_file); 
        if os.path.exists(pdf_path): os.remove(pdf_path)
    chatbot.append(("给出输出文件清单", str(generated_conclusion_files)))
    yield chatbot, history, msg