Spaces:
Sleeping
Sleeping
""" | |
A small Streamlit app that loads a Keras model trained on the MNIST dataset and allows the user to draw a digit on a canvas and get a predicted digit from the model. | |
""" | |
import streamlit as st | |
from PIL import Image | |
from streamlit_drawable_canvas import st_canvas | |
import os | |
import numpy as np | |
from keras import models | |
import keras.datasets.mnist as mnist | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
import time | |
import onnx | |
import onnxruntime | |
from scipy.special import softmax | |
def load_picture(): | |
""" | |
Shows the MNIST dataset image | |
""" | |
st.image("img/show.png", width=250, caption="First 9 images from the MNIST dataset") | |
def keras_prediction(final, model_path): | |
"""Make a predition using a Keras model | |
Args: | |
final: The input image | |
model_path: The path of the Keras model to load | |
Returns: | |
np.array: Predictions from the model. The probability of each digit. | |
float: Time to make the prediction | |
float: Time to load the model | |
""" | |
# load the model | |
load_time = time.time() | |
model = models.load_model( | |
os.path.abspath(os.path.join(os.path.dirname(__file__), model_path)) | |
) | |
after_load_curr = time.time() | |
# Make the prediction | |
curr_time = time.time() | |
prediction = model.predict(final[None, ...]) | |
after_time = time.time() | |
return prediction, after_time - curr_time, after_load_curr - load_time | |
def onnx_prediction(final, model_path): | |
"""Make a predition using an Onnx model | |
Args: | |
final: The input image | |
model_path: The path of the Onnx model to load | |
Returns: | |
np.array: Predictions from the model. The probability of each digit. | |
float: Time to make the prediction | |
float: Time to load the model | |
""" | |
im_np = np.expand_dims(final, axis=0) | |
im_np = np.expand_dims(im_np, axis=0) | |
im_np = im_np.astype("float32") | |
# Load the model | |
load_curr = time.time() | |
session = onnxruntime.InferenceSession(model_path, None) | |
input_name = session.get_inputs()[0].name | |
output_name = session.get_outputs()[0].name | |
after_load_curr = time.time() | |
# Make the prediction | |
curr_time = time.time() | |
result = session.run([output_name], {input_name: im_np}) | |
prediction = softmax(np.array(result).squeeze(), axis=0) | |
after_time = time.time() | |
return prediction, after_time - curr_time, after_load_curr - load_curr | |
def main(): | |
""" | |
The main function/primary entry point of the app | |
""" | |
# Setup | |
st.set_page_config(layout="wide") | |
st.title("MNIST Digit Recognizer") | |
col1, col2 = st.columns([0.8, 0.2], gap="small") | |
with col1: | |
st.markdown( | |
""" | |
This Streamlit app demonstrates the performance of multiple different neural networks (and associated frameworks) trained on the <a href="https://yann.lecun.com/exdb/mnist/">MNIST dataset</a> to predict handwritten digits. Draw a digit in the canvas below and see the model's prediction. You can: | |
- Change the stroke width of the digit using the slider | |
- Choose what model you use for predictions | |
- Onnx: The mnist-12 Onnx model from <a href="https://xethub.com/XetHub/onnx-models/src/branch/main/vision/classification/mnist">Onnx's pre-trained MNIST models</a> | |
- Autokeras: A model generated using the <a href="https://autokeras.com/image_classifier/">Autokeras image classifier class</a> | |
- Basic: A simple <a href="https://keras.io/">Keras</a> model with two layers where each layer has 300 nodes. The model was trained on the MNIST dataset for 35 epochs. | |
Like any machine learning model, this model is a function of the data it was fed during training. As you can see in the picture, the numbers in the images have a specific shape, location, and size. By playing around with the stroke width and where you draw the digit, you can see how the model's prediction changes. | |
If you change your selected model after drawing the digit, that same drawing will be used with the newly selected model. To clear your "hand" drawn digit, click the trashcan icon under the drawing canvas.""", | |
unsafe_allow_html=True, | |
) | |
with col2: | |
# Load the first 9 images from the MNIST dataset and show them | |
load_picture() | |
col3, col4 = st.columns(2, gap="small") | |
with col4: | |
# Stroke width slider to change the width of the canvas stroke | |
# Starts at 10 because that's reasonably close to the width of the MNIST digits | |
stroke_width = st.slider("Stroke width: ", 1, 25, 10) | |
model_choice = st.selectbox( | |
"Choose what model to use for predictions:", ("Onnx", "Autokeras", "Basic") | |
) | |
if "Basic" in model_choice: | |
model_path = "models/mnist_model.keras" | |
if "Auto" in model_choice: | |
model_path = "models/autokeras_model.keras" | |
if "Onnx" in model_choice: | |
model_path = "models/mnist_12.onnx" | |
with col3: | |
# Create a canvas component | |
canvas_result = st_canvas( | |
stroke_width=stroke_width, | |
stroke_color="#FFF", | |
fill_color="#000", | |
background_color="#000", | |
background_image=None, | |
update_streamlit=True, | |
height=300, | |
width=300, | |
drawing_mode="freedraw", | |
point_display_radius=0, | |
key="canvas", | |
) | |
if canvas_result is not None and canvas_result.image_data is not None: | |
# Get the image data, convert it to grayscale, and resize it to 28x28 (the same size as the MNIST dataset images) | |
img_data = canvas_result.image_data | |
im = Image.fromarray(img_data.astype("uint8")).convert("L") | |
im = im.resize((28, 28)) | |
# Convert the image to a numpy array and normalize the values | |
final = np.array(im, dtype=np.float32) / 255.0 | |
# if final is not all zeros, run the prediction | |
if not np.all(final == 0): | |
if model_choice != "Onnx": | |
prediction, pred_time, load_time = keras_prediction(final, model_path) | |
else: | |
prediction, pred_time, load_time = onnx_prediction(final, model_path) | |
# print the prediction | |
st.header(f"Results") | |
table_data = { | |
"Model": [model_choice], | |
"Prediction": [np.argmax(prediction)], | |
"Load time (ms)": f"{load_time * 1000:.2f}", | |
"Prediction time (ms)": f"{pred_time * 1000:.2f}", | |
} | |
st.table(table_data) | |
# Create a 2 column dataframe with one column as the digits and the other as the probability | |
data = pd.DataFrame( | |
{"Digit": list(range(10)), "Probability": np.ravel(prediction)} | |
) | |
col1, col2 = st.columns([0.8, 0.2], gap="small") | |
# create a bar chart to show the predictions | |
with col1: | |
st.bar_chart(data, x="Digit", y="Probability", height=500) | |
# show the probability distribution numerically | |
with col2: | |
data["Probability"] = data["Probability"].apply(lambda x: f"{x:.2%}") | |
st.dataframe(data, hide_index=True) | |
if __name__ == "__main__": | |
main() | |