Spaces:
Runtime error
Runtime error
train
Browse files- app.ipynb +6 -5
- train.ipynb +64 -21
app.ipynb
CHANGED
@@ -70,9 +70,7 @@
|
|
70 |
"cell_type": "code",
|
71 |
"execution_count": 5,
|
72 |
"id": "6e0bf9da",
|
73 |
-
"metadata": {
|
74 |
-
"scrolled": false
|
75 |
-
},
|
76 |
"outputs": [
|
77 |
{
|
78 |
"data": {
|
@@ -322,7 +320,10 @@
|
|
322 |
"cell_type": "code",
|
323 |
"execution_count": 16,
|
324 |
"id": "82774c08",
|
325 |
-
"metadata": {
|
|
|
|
|
|
|
326 |
"outputs": [
|
327 |
{
|
328 |
"data": {
|
@@ -791,7 +792,7 @@
|
|
791 |
"name": "python",
|
792 |
"nbconvert_exporter": "python",
|
793 |
"pygments_lexer": "ipython3",
|
794 |
-
"version": "3.
|
795 |
},
|
796 |
"toc": {
|
797 |
"base_numbering": 1,
|
|
|
70 |
"cell_type": "code",
|
71 |
"execution_count": 5,
|
72 |
"id": "6e0bf9da",
|
73 |
+
"metadata": {},
|
|
|
|
|
74 |
"outputs": [
|
75 |
{
|
76 |
"data": {
|
|
|
320 |
"cell_type": "code",
|
321 |
"execution_count": 16,
|
322 |
"id": "82774c08",
|
323 |
+
"metadata": {
|
324 |
+
"scrolled": true,
|
325 |
+
"tags": []
|
326 |
+
},
|
327 |
"outputs": [
|
328 |
{
|
329 |
"data": {
|
|
|
792 |
"name": "python",
|
793 |
"nbconvert_exporter": "python",
|
794 |
"pygments_lexer": "ipython3",
|
795 |
+
"version": "3.7.11"
|
796 |
},
|
797 |
"toc": {
|
798 |
"base_numbering": 1,
|
train.ipynb
CHANGED
@@ -10,7 +10,7 @@
|
|
10 |
},
|
11 |
{
|
12 |
"cell_type": "code",
|
13 |
-
"execution_count":
|
14 |
"id": "44eb0ad3",
|
15 |
"metadata": {},
|
16 |
"outputs": [],
|
@@ -21,7 +21,7 @@
|
|
21 |
},
|
22 |
{
|
23 |
"cell_type": "code",
|
24 |
-
"execution_count":
|
25 |
"id": "d838c0b3",
|
26 |
"metadata": {},
|
27 |
"outputs": [],
|
@@ -145,19 +145,62 @@
|
|
145 |
"learn.fine_tune(3)"
|
146 |
]
|
147 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
{
|
149 |
"cell_type": "code",
|
150 |
"execution_count": 6,
|
151 |
-
"id": "
|
152 |
"metadata": {},
|
153 |
"outputs": [
|
154 |
{
|
155 |
-
"
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
{
|
162 |
"data": {
|
163 |
"text/html": [
|
@@ -174,9 +217,9 @@
|
|
174 |
" <tbody>\n",
|
175 |
" <tr>\n",
|
176 |
" <td>0</td>\n",
|
177 |
-
" <td>1.
|
178 |
-
" <td>0.
|
179 |
-
" <td>0.
|
180 |
" <td>00:24</td>\n",
|
181 |
" </tr>\n",
|
182 |
" </tbody>\n",
|
@@ -205,23 +248,23 @@
|
|
205 |
" <tbody>\n",
|
206 |
" <tr>\n",
|
207 |
" <td>0</td>\n",
|
208 |
-
" <td>0.
|
209 |
-
" <td>0.
|
210 |
-
" <td>0.
|
211 |
" <td>00:27</td>\n",
|
212 |
" </tr>\n",
|
213 |
" <tr>\n",
|
214 |
" <td>1</td>\n",
|
215 |
-
" <td>0.
|
216 |
-
" <td>0.
|
217 |
-
" <td>0.
|
218 |
" <td>00:27</td>\n",
|
219 |
" </tr>\n",
|
220 |
" <tr>\n",
|
221 |
" <td>2</td>\n",
|
222 |
-
" <td>0.
|
223 |
-
" <td>0.
|
224 |
-
" <td>0.
|
225 |
" <td>00:27</td>\n",
|
226 |
" </tr>\n",
|
227 |
" </tbody>\n",
|
|
|
10 |
},
|
11 |
{
|
12 |
"cell_type": "code",
|
13 |
+
"execution_count": 1,
|
14 |
"id": "44eb0ad3",
|
15 |
"metadata": {},
|
16 |
"outputs": [],
|
|
|
21 |
},
|
22 |
{
|
23 |
"cell_type": "code",
|
24 |
+
"execution_count": 7,
|
25 |
"id": "d838c0b3",
|
26 |
"metadata": {},
|
27 |
"outputs": [],
|
|
|
145 |
"learn.fine_tune(3)"
|
146 |
]
|
147 |
},
|
148 |
+
{
|
149 |
+
"cell_type": "markdown",
|
150 |
+
"id": "477ef53a-4b5c-4a07-81c2-95b8e7397cac",
|
151 |
+
"metadata": {},
|
152 |
+
"source": [
|
153 |
+
"We could try a better model, based on [this analysis](https://www.kaggle.com/code/jhoward/which-image-models-are-best/). The convnext models work great!"
|
154 |
+
]
|
155 |
+
},
|
156 |
{
|
157 |
"cell_type": "code",
|
158 |
"execution_count": 6,
|
159 |
+
"id": "6ee4197a-25be-48ac-a167-903bec5186b1",
|
160 |
"metadata": {},
|
161 |
"outputs": [
|
162 |
{
|
163 |
+
"data": {
|
164 |
+
"text/plain": [
|
165 |
+
"['convnext_base',\n",
|
166 |
+
" 'convnext_base_384_in22ft1k',\n",
|
167 |
+
" 'convnext_base_in22ft1k',\n",
|
168 |
+
" 'convnext_base_in22k',\n",
|
169 |
+
" 'convnext_large',\n",
|
170 |
+
" 'convnext_large_384_in22ft1k',\n",
|
171 |
+
" 'convnext_large_in22ft1k',\n",
|
172 |
+
" 'convnext_large_in22k',\n",
|
173 |
+
" 'convnext_nano_hnf',\n",
|
174 |
+
" 'convnext_small',\n",
|
175 |
+
" 'convnext_small_384_in22ft1k',\n",
|
176 |
+
" 'convnext_small_in22ft1k',\n",
|
177 |
+
" 'convnext_small_in22k',\n",
|
178 |
+
" 'convnext_tiny',\n",
|
179 |
+
" 'convnext_tiny_384_in22ft1k',\n",
|
180 |
+
" 'convnext_tiny_hnf',\n",
|
181 |
+
" 'convnext_tiny_hnfd',\n",
|
182 |
+
" 'convnext_tiny_in22ft1k',\n",
|
183 |
+
" 'convnext_tiny_in22k',\n",
|
184 |
+
" 'convnext_xlarge_384_in22ft1k',\n",
|
185 |
+
" 'convnext_xlarge_in22ft1k',\n",
|
186 |
+
" 'convnext_xlarge_in22k']"
|
187 |
+
]
|
188 |
+
},
|
189 |
+
"execution_count": 6,
|
190 |
+
"metadata": {},
|
191 |
+
"output_type": "execute_result"
|
192 |
+
}
|
193 |
+
],
|
194 |
+
"source": [
|
195 |
+
"timm.list_models('convnext*')"
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"cell_type": "code",
|
200 |
+
"execution_count": 9,
|
201 |
+
"id": "67d34f88-a580-48b9-9b42-e9d0c7e3e870",
|
202 |
+
"metadata": {},
|
203 |
+
"outputs": [
|
204 |
{
|
205 |
"data": {
|
206 |
"text/html": [
|
|
|
217 |
" <tbody>\n",
|
218 |
" <tr>\n",
|
219 |
" <td>0</td>\n",
|
220 |
+
" <td>1.113290</td>\n",
|
221 |
+
" <td>0.253742</td>\n",
|
222 |
+
" <td>0.087957</td>\n",
|
223 |
" <td>00:24</td>\n",
|
224 |
" </tr>\n",
|
225 |
" </tbody>\n",
|
|
|
248 |
" <tbody>\n",
|
249 |
" <tr>\n",
|
250 |
" <td>0</td>\n",
|
251 |
+
" <td>0.293625</td>\n",
|
252 |
+
" <td>0.205537</td>\n",
|
253 |
+
" <td>0.067659</td>\n",
|
254 |
" <td>00:27</td>\n",
|
255 |
" </tr>\n",
|
256 |
" <tr>\n",
|
257 |
" <td>1</td>\n",
|
258 |
+
" <td>0.195267</td>\n",
|
259 |
+
" <td>0.185939</td>\n",
|
260 |
+
" <td>0.055480</td>\n",
|
261 |
" <td>00:27</td>\n",
|
262 |
" </tr>\n",
|
263 |
" <tr>\n",
|
264 |
" <td>2</td>\n",
|
265 |
+
" <td>0.123829</td>\n",
|
266 |
+
" <td>0.172681</td>\n",
|
267 |
+
" <td>0.055480</td>\n",
|
268 |
" <td>00:27</td>\n",
|
269 |
" </tr>\n",
|
270 |
" </tbody>\n",
|