File size: 373 Bytes
6ef88d9
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
learn = load_learner('model.pkl')

labels = learn.dls.vocab
def predict(img):
    img = PILImage.create(img)
    pred,pred_idx,probs = learn.predict(img)
    return {labels[i]: float(probs[i]) for i in range(len(labels))}

import gradio as gr
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=True)