File size: 5,285 Bytes
6720717
 
 
 
 
7568689
 
6720717
 
7568689
6720717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7568689
6720717
 
 
 
 
 
 
 
 
 
7568689
 
 
 
 
13cbc38
 
 
 
6720717
7568689
 
 
 
 
6720717
7568689
 
 
6720717
13cbc38
 
 
 
 
7568689
6720717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872bd1f
6720717
 
7568689
 
 
872bd1f
13cbc38
7568689
 
 
 
6720717
7568689
 
 
 
6720717
 
 
 
 
 
 
7568689
 
 
 
 
 
 
 
 
 
13cbc38
7568689
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import gradio as gr
from collections import OrderedDict
from PIL import Image, ImageDraw, ImageFont
from io import BytesIO
import time
import tempfile
import PyPDF2
import pdf2image
from datasets import load_dataset

MAX_PAGES = 50
MAX_PDF_SIZE = 100000000  # almost 100MB
MIN_WIDTH, MIN_HEIGHT = 150, 150


def equal_image_grid(images):
    def compute_grid(n, max_cols=6):
        equalDivisor = int(n**0.5)
        cols = min(equalDivisor, max_cols)
        rows = equalDivisor
        if rows * cols >= n:
            return rows, cols
        cols += 1
        if rows * cols >= n:
            return rows, cols
        while rows * cols < n:
            rows += 1
        return rows, cols

    # assert len(images) == rows*cols
    rows, cols = compute_grid(len(images))

    # rescaling to min width [height padding]
    images = [im for im in images if (im.height > 0) and (im.width > 0)]  # could be NA

    min_width = min(im.width for im in images)
    images = [im.resize((min_width, int(im.height * min_width / im.width)), resample=Image.BICUBIC) for im in images]

    w, h = max([img.size[0] for img in images]), max([img.size[1] for img in images])

    grid = Image.new("RGB", size=(cols * w, rows * h))
    grid_w, grid_h = grid.size

    for i, img in enumerate(images):
        grid.paste(img, box=(i % cols * w, i // cols * h))
    return grid


def add_pagenumbers(im_list, height_scale=40):
    def add_pagenumber(image, i):
        width, height = image.size
        draw = ImageDraw.Draw(image)
        fontsize = int((width * height) ** (0.5) / height_scale)
        font = ImageFont.truetype("Arial.ttf", fontsize)
        margin = int(2 * fontsize)
        draw.text(
            (width - margin, height - margin),
            str(i + 1),
            fill="#D00917",
            font=font,
            spacing=4,
            align="right",
        )

    for i, image in enumerate(im_list):
        add_pagenumber(image, i)


def pdf_to_grid(pdf_path):
    reader = PyPDF2.PdfReader(pdf_path)
    reached_page_limit = False
    images = []
    try:
        for p, page in enumerate(reader.pages):
            if reached_page_limit:
                break
            for image in page.images:
                im = Image.open(BytesIO(image.data))
                if im.width < MIN_WIDTH and im.height < MIN_HEIGHT:
                    continue
                images.append(im)
    except Exception as e:
        print(f"{pdf_path} PyPDF get_images {e}")
        images = pdf2image.convert_from_bytes(pdf_path)

    # simpler but slower
    # images = pdf2image.convert_from_path(pdf_path)

    if len(images) == 0:
        return None
    add_pagenumbers(images)
    return equal_image_grid(images)


def main(dataset, label):
    # to get different samples, use timestamp as seed
    timestamp = time.time()
    seed = int(timestamp * 1000) % 1000000

    try:
        shuffled_dataset = DATASETS[dataset].shuffle(buffer_size=10, seed=seed)
    except:  # lazy
        shuffled_dataset = DATASETS[dataset].shuffle(seed=seed)

    # first get PDF file
    for sample in shuffled_dataset:
        label_column = "label" if "label" in sample else "labels"
        filelabel = _CLASSES[sample[label_column]]
        if label and filelabel != label:
            continue
        pdf_path = sample["file"]
        grid = pdf_to_grid(BytesIO(pdf_path))
        if grid is None:
            continue
        PDF = tempfile.NamedTemporaryFile(suffix=".pdf", delete=False)
        with PDF as tmp_file:
            # pdf_path.to_file(tmp_file.name)
            tmp_file.write(pdf_path)
            return filelabel, grid, tmp_file.name


_CLASSES = [
    "letter",
    "form",
    "email",
    "handwritten",
    "advertisement",
    "scientific report",
    "scientific publication",
    "specification",
    "file folder",
    "news article",
    "budget",
    "invoice",
    "presentation",
    "questionnaire",
    "resume",
    "memo",
    "",
]

# load both datasets in memory? --> easier retrieval afterwards with seed index based on pressing button
DATASETS = OrderedDict(
    {
        # "rvl_cdip": load_dataset("bdpc/rvl_cdip_mp", split="test", streaming=True),
        "rvl_cdip_N": load_dataset("bdpc/rvl_cdip_n_mp", split="test"),
    }
)

meta_cats = {"dataset": ["rvl_cdip", "rvl_cdip_N"], "label": _CLASSES}
sliders = [gr.Dropdown(choices=choices, value=choices[-1], label=label) for label, choices in meta_cats.items()]
slider_defaults = [sliders[0].value, None]

# test
# l, im, f = main(*slider_defaults)

outputs = [
    gr.Textbox(label="label"),
    gr.Image(label="image grid of PDF"),
    gr.File(label="PDF"),
]

DESCRIPTION = """
Visualize PDF samples from multi-page (PDF) document classification datasets @ https://huggingface.co/datasets/bdpc

- **dataset**: dataset name
- **label**: label name

The first time that the app is launched, it will download the datasets, which can take a few minutes.
For fastest response, choose the rvl_cdip_N dataset, which is considerably smaller to iterate over.
"""

# main("rvl_cdip_N", "letter")
iface = gr.Interface(
    fn=main,
    inputs=sliders,
    outputs=outputs,
    description=DESCRIPTION,
    title="Beyond Document Page Classification: Examples",
)
iface.launch(share=True)