Spaces:
Runtime error
Runtime error
jonathanjordan21
commited on
Commit
•
5b0829a
1
Parent(s):
cc90e1e
Create synthesis.py
Browse files- synthesis.py +66 -0
synthesis.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from tqdm import tqdm
|
3 |
+
import librosa
|
4 |
+
from hparams import hparams
|
5 |
+
from wavenet_vocoder import builder
|
6 |
+
|
7 |
+
torch.set_num_threads(4)
|
8 |
+
use_cuda = torch.cuda.is_available()
|
9 |
+
device = torch.device("cuda" if use_cuda else "cpu")
|
10 |
+
|
11 |
+
|
12 |
+
def build_model():
|
13 |
+
|
14 |
+
model = getattr(builder, hparams.builder)(
|
15 |
+
out_channels=hparams.out_channels,
|
16 |
+
layers=hparams.layers,
|
17 |
+
stacks=hparams.stacks,
|
18 |
+
residual_channels=hparams.residual_channels,
|
19 |
+
gate_channels=hparams.gate_channels,
|
20 |
+
skip_out_channels=hparams.skip_out_channels,
|
21 |
+
cin_channels=hparams.cin_channels,
|
22 |
+
gin_channels=hparams.gin_channels,
|
23 |
+
weight_normalization=hparams.weight_normalization,
|
24 |
+
n_speakers=hparams.n_speakers,
|
25 |
+
dropout=hparams.dropout,
|
26 |
+
kernel_size=hparams.kernel_size,
|
27 |
+
upsample_conditional_features=hparams.upsample_conditional_features,
|
28 |
+
upsample_scales=hparams.upsample_scales,
|
29 |
+
freq_axis_kernel_size=hparams.freq_axis_kernel_size,
|
30 |
+
scalar_input=True,
|
31 |
+
legacy=hparams.legacy,
|
32 |
+
)
|
33 |
+
return model
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
def wavegen(model, c=None, tqdm=tqdm):
|
38 |
+
"""Generate waveform samples by WaveNet.
|
39 |
+
|
40 |
+
"""
|
41 |
+
|
42 |
+
model.eval()
|
43 |
+
model.make_generation_fast_()
|
44 |
+
|
45 |
+
Tc = c.shape[0]
|
46 |
+
upsample_factor = hparams.hop_size
|
47 |
+
# Overwrite length according to feature size
|
48 |
+
length = Tc * upsample_factor
|
49 |
+
|
50 |
+
# B x C x T
|
51 |
+
c = torch.FloatTensor(c.T).unsqueeze(0)
|
52 |
+
|
53 |
+
initial_input = torch.zeros(1, 1, 1).fill_(0.0)
|
54 |
+
|
55 |
+
# Transform data to GPU
|
56 |
+
initial_input = initial_input.to(device)
|
57 |
+
c = None if c is None else c.to(device)
|
58 |
+
|
59 |
+
with torch.no_grad():
|
60 |
+
y_hat = model.incremental_forward(
|
61 |
+
initial_input, c=c, g=None, T=length, tqdm=tqdm, softmax=True, quantize=True,
|
62 |
+
log_scale_min=hparams.log_scale_min)
|
63 |
+
|
64 |
+
y_hat = y_hat.view(-1).cpu().data.numpy()
|
65 |
+
|
66 |
+
return y_hat
|