|
import functools |
|
|
|
import gradio as gr |
|
import seaborn as sns |
|
import pandas as pd |
|
|
|
|
|
|
|
BENCHMARK_DATA = { |
|
"Greedy Search": { |
|
"DistilGPT2": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
"GPT2": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
"OPT-1.3B": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
"GPTJ-6B": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
"T5 Small": { |
|
"T4": [99.88, 1527.73, 18.78], |
|
"3090": [55.09, 665.70, 9.25], |
|
"A100": [124.91, 1642.07, 13.72], |
|
}, |
|
"T5 Base": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
"T5 Large": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
"T5 3B": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
}, |
|
"Sample": { |
|
"DistilGPT2": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
"GPT2": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
"OPT-1.3B": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
"GPTJ-6B": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
"T5 Small": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
"T5 Base": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
"T5 Large": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
"T5 3B": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
}, |
|
"Beam Search": { |
|
"DistilGPT2": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
"GPT2": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
"OPT-1.3B": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
"GPTJ-6B": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
"T5 Small": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
"T5 Base": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
"T5 Large": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
"T5 3B": { |
|
"T4": [], |
|
"3090": [], |
|
"A100": [], |
|
}, |
|
}, |
|
} |
|
|
|
|
|
def get_plot(model_name, generate_type): |
|
df = pd.DataFrame(BENCHMARK_DATA[generate_type][model_name]) |
|
df["framework"] = ["PyTorch", "TF (Eager Execition)", "TF (XLA)"] |
|
df = pd.melt(df, id_vars=["framework"], value_vars=["T4", "3090", "A100"]) |
|
|
|
g = sns.catplot( |
|
data=df, kind="bar", |
|
x="variable", y="value", hue="framework", |
|
ci="sd", palette="dark", alpha=.6, height=6 |
|
) |
|
g.despine(left=True) |
|
|
|
|
|
return g.gcf() |
|
|
|
demo = gr.Blocks() |
|
|
|
with demo: |
|
with gr.Tabs(): |
|
with gr.TabItem("Greedy Search"): |
|
model_selector = gr.Dropdown( |
|
choices=["DistilGPT2", "GPT2", "OPT-1.3B", "GPTJ-6B", "T5 Small", "T5 Base", "T5 Large", "T5 3B"], |
|
value="T5 Small", |
|
label="Model", |
|
interactive=True, |
|
) |
|
plot_fn = functools.partial(get_plot, generate_type="Greedy Search") |
|
plot = gr.Plot(value=plot_fn("T5 Small")) |
|
model_selector.change(fn=get_plot, inputs=[model_selector], outputs=plot) |
|
with gr.TabItem("Sample"): |
|
gr.Button("New Tiger") |
|
with gr.TabItem("Beam Search"): |
|
gr.Button("New Tiger") |
|
with gr.TabItem("Benchmark Information"): |
|
gr.Dataframe( |
|
headers=["Parameter", "Value"], |
|
value=[ |
|
["Transformers Version", "4.22.dev0"], |
|
["TensorFlow Version", "2.9.1"], |
|
["Pytorch Version", "1.11.0"], |
|
["OS", "22.04 LTS (3090) / Debian 10 (other GPUs)"], |
|
["CUDA", "11.6 (3090) / 11.3 (others GPUs)"], |
|
["Number of runs", "100 (the first run was discarded to ignore compilation time)"], |
|
["Is there code to reproduce?", "Yes -- https://gist.github.com/gante/f0017e3f13ac11b0c02e4e4db351f52f"], |
|
], |
|
) |
|
|
|
demo.launch() |
|
|