lex_glue_ecthrA / app.py
jishnuprakash's picture
changed title
6a956f9
"""
@author:jishnuprakash
"""
import nltk
nltk.download('stopwords')
import os
import torch
import spacy
import utils as ut
import streamlit as st
import pandas as pd
import pandas as pd
import numpy as np
from spacy import displacy
from tqdm.auto import tqdm
from datasets import load_dataset
from transformers import AutoTokenizer
from pytorch_lightning.metrics.functional import accuracy
st.set_page_config(page_title='Classification - BERT', layout='wide', page_icon=':computer:')
st.set_option('deprecation.showPyplotGlobalUse', False)
#this is the header
st.markdown("<h1 style='text-align: center; color: black;'>Multi-label classification using BERT Transformers</h1>", unsafe_allow_html=True)
st.markdown("<div style='text-align: center''> Author: Jishnu Prakash Kunnanath Poduvattil | Portfolio:<a href='https://jishnuprakash.github.io/'>jishnuprakash.github.io</a> | Source Code: <a href='https://github.com/Jishnuprakash/lexGLUE_jishnuprakash'>Github</a> </div>", unsafe_allow_html=True)
st.text('')
expander = st.expander("View Description")
expander.write("""This is a user interface to view and interact with
results obtained from fine-tuned BERT transformers trained on LEX GLUE: ECTHR_A dataset.
Try inputing a text below and see the model predictions. You can also extract the location
and Date entities from the text using the checkbox.\\
Below, you can do the same on test data.\\
Please find the test data here https://huggingface.co/datasets/lex_glue """)
#Load trained model
@st.cache(allow_output_mutation=True)
def load_model():
trained_model = ut.LexGlueTagger.load_from_checkpoint(ut.check_filename+'.ckpt', num_classes = ut.num_classes)
#Initialise BERT tokenizer
tokenizer = AutoTokenizer.from_pretrained(ut.bert_model)
#Set to Eval and freeze to avoid weight update
trained_model.eval()
trained_model.freeze()
test = load_dataset("lex_glue", "ecthr_a")['test']
test = ut.preprocess_data(pd.DataFrame(test))
#Load Model from Spacy
NER = spacy.load("en_core_web_sm")
return (trained_model, tokenizer, test, NER)
trained_model, tokenizer, test, NER = load_model()
st.header("Try out a text!")
with st.form('model_prediction'):
text = st.text_area("Input Text", test.iloc[0]['text'][20])
text = text[:2000]
n1, n2, n3 = st.columns((0.2,0.4,0.4))
ner_check = n1.checkbox("Extract Location and Date", value=True)
predict = n2.form_submit_button("Predict")
with st.spinner("Predicting..."):
if predict:
encoding = tokenizer.encode_plus(text,
add_special_tokens=True,
max_length=512,
return_token_type_ids=False,
padding="max_length",
return_attention_mask=True,
return_tensors='pt',)
# Predict on text
_, prediction = trained_model(encoding["input_ids"], encoding["attention_mask"])
prediction = list(prediction.flatten().numpy())
final_predictions = [prediction.index(i) for i in prediction if i > ut.threshold]
if len(final_predictions)>0:
for i in final_predictions:
st.write('Violations: '+ ut.lex_classes[i] + ' : ' + str(round(prediction[i]*100, 2)) + ' %')
else:
st.write("Confidence less than 50%, Please try another text.")
if ner_check:
#Perform NER on a single text
n_text = NER(text)
loc = []
date = []
for word in n_text.ents:
print(word.text,word.label_)
if word.label_ == 'DATE':
date.append(word.text)
elif word.label_ == 'GPE':
loc.append(word.text)
loc = list(set(loc))
date = list(set(date))
loc = ["None found"] if len(loc)==0 else loc
date = ["None found"] if len(date)==0 else date
st.write("Location entities: " + ",".join(loc))
st.write("Date entities: " + ",".join(date))
#Display entities
st.write("All Entities-")
ent_html = displacy.render(n_text, style="ent", jupyter=False)
# Display the entity visualization in the browser:
st.markdown(ent_html, unsafe_allow_html=True)
st.header("Predict on test data")
with st.form('model_test_prediction'):
s1, s2, s3 = st.columns((0.2, 0.4, 0.4))
top = s1.number_input("Count",1, len(test), value=10)
ner_check2 = s2.checkbox("Extract Location and Date", value=True)
predict2 = s2.form_submit_button("Predict")
with st.spinner("Predicting on test data"):
if predict2:
test_dataset = ut.LexGlueDataset(test.head(top), tokenizer, max_tokens=512)
# Predict on test data
predictions = []
labels = []
for item in tqdm(test_dataset):
_ , prediction = trained_model(item["input_ids"].unsqueeze(dim=0),
item["attention_mask"].unsqueeze(dim=0))
predictions.append(prediction.flatten())
labels.append(item["labels"].int())
predictions = torch.stack(predictions)
labels = torch.stack(labels)
y_pred = predictions.numpy()
y_true = labels.numpy()
#Filter predictions
upper, lower = 1, 0
y_pred = np.where(y_pred > ut.threshold, upper, lower)
# d1, d2 = st.columns((0.6, 0.4))
#Accuracy
acc = round(float(accuracy(predictions, labels, threshold=ut.threshold))*100, 2)
out = test_dataset.data
out['predictions'] = [[list(i).index(j) for j in i if j==1] for i in y_pred]
out['labels'] = out['labels'].apply(lambda x: [ut.lex_classes[i] for i in x])
out['predictions'] = out['predictions'].apply(lambda x: [ut.lex_classes[i] for i in x])
if ner_check2:
#Perform NER on Test Dataset
out['nlp_text'] = out.text.apply(lambda x: NER(" ".join(x)))
#Extract Entities
out['location'] = out.nlp_text.apply(lambda x: set([i.text for i in x.ents if i.label_=='GPE']))
out['date'] = out.nlp_text.apply(lambda x: set([i.text for i in x.ents if i.label_=='DATE']))
st.dataframe(out.drop('nlp_text', axis=1))
else:
st.dataframe(out)
s3.metric(label ='Accuracy',value = acc, delta = '', delta_color = 'inverse')
st.header("Comparison - Model Performance")
st.write("""2 transformer models were finetuned and compared their performance on the test dataset. \\
- Bert uncased model (on Original & preprocessed text) \\
- Legal-Bert model (on Original & preprocessed text)\\
(Preprocessing steps were removal of numbers, symbols, stopwords followed by lemmatisation on tokens.)\\
The best performing model is Legal-BERT on original data. Please see the comparison below.""")
met = pd.read_csv("model_comparison.csv")
a1, a2 = st.columns((0.5,0.5))
a1.subheader("Evaluation Metrics")
a1.dataframe(met[12:].reset_index(drop=True))
a2.subheader("Area under ROC curve")
a2.dataframe(met[:11])