jhj0517 commited on
Commit
0a9bdfb
1 Parent(s): 2c51e62

initial commit

Browse files
.gitignore ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ .DS_Store
7
+ pretrained_weights
8
+ output
9
+
10
+ venv/
11
+ pretrained_weights/
12
+ .idea/
LICENSE ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ MIT License
3
+
4
+ Copyright (c) 2024 Tencent Music Entertainment Group
5
+
6
+ Permission is hereby granted, free of charge, to any person obtaining a copy
7
+ of this software and associated documentation files (the "Software"), to deal
8
+ in the Software without restriction, including without limitation the rights
9
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
+ copies of the Software, and to permit persons to whom the Software is
11
+ furnished to do so, subject to the following conditions:
12
+
13
+ The above copyright notice and this permission notice shall be included in all
14
+ copies or substantial portions of the Software.
15
+
16
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
+ SOFTWARE.
23
+
24
+
25
+ Other dependencies and licenses:
26
+
27
+
28
+ Open Source Software Licensed under the MIT License:
29
+ --------------------------------------------------------------------
30
+ 1. sd-vae-ft-mse
31
+ Files:https://huggingface.co/stabilityai/sd-vae-ft-mse/tree/main
32
+ License:MIT license
33
+ For details:https://choosealicense.com/licenses/mit/
34
+
35
+
36
+
37
+
38
+ Open Source Software Licensed under the Apache License Version 2.0:
39
+ --------------------------------------------------------------------
40
+ 1. DWpose
41
+ Files:https://huggingface.co/yzd-v/DWPose/tree/main
42
+ License:Apache-2.0
43
+ For details:https://choosealicense.com/licenses/apache-2.0/
44
+
45
+ 2. Moore-AnimateAnyone
46
+ Files:https://github.com/MooreThreads/Moore-AnimateAnyone
47
+ License:Apache-2.0
48
+ For details:https://github.com/MooreThreads/Moore-AnimateAnyone/blob/master/LICENSE
49
+
50
+ Terms of the Apache License Version 2.0:
51
+ --------------------------------------------------------------------
52
+ Apache License
53
+
54
+ Version 2.0, January 2004
55
+
56
+ http://www.apache.org/licenses/
57
+
58
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
59
+ 1. Definitions.
60
+
61
+ "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document.
62
+
63
+ "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.
64
+
65
+ "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.
66
+
67
+ "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.
68
+
69
+ "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files.
70
+
71
+ "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types.
72
+
73
+ "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below).
74
+
75
+ "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.
76
+
77
+ "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution."
78
+
79
+ "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work.
80
+
81
+ 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.
82
+
83
+ 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed.
84
+
85
+ 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
86
+
87
+ You must give any other recipients of the Work or Derivative Works a copy of this License; and
88
+
89
+ You must cause any modified files to carry prominent notices stating that You changed the files; and
90
+
91
+ You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and
92
+
93
+ If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License.
94
+
95
+ You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License.
96
+
97
+ 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions.
98
+
99
+ 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file.
100
+
101
+ 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License.
102
+
103
+ 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.
104
+
105
+ 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.
106
+
107
+ END OF TERMS AND CONDITIONS
assets/images/images_will_be_saved_here.txt ADDED
File without changes
assets/videos/videos_will_be_saved_here.txt ADDED
File without changes
configs/inference_v2.yaml ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ unet_additional_kwargs:
2
+ use_inflated_groupnorm: true
3
+ unet_use_cross_frame_attention: false
4
+ unet_use_temporal_attention: false
5
+ use_motion_module: true
6
+ motion_module_resolutions:
7
+ - 1
8
+ - 2
9
+ - 4
10
+ - 8
11
+ motion_module_mid_block: true
12
+ motion_module_decoder_only: false
13
+ motion_module_type: Vanilla
14
+ motion_module_kwargs:
15
+ num_attention_heads: 8
16
+ num_transformer_block: 1
17
+ attention_block_types:
18
+ - Temporal_Self
19
+ - Temporal_Self
20
+ temporal_position_encoding: true
21
+ temporal_position_encoding_max_len: 128
22
+ temporal_attention_dim_div: 1
23
+
24
+ noise_scheduler_kwargs:
25
+ beta_start: 0.00085
26
+ beta_end: 0.012
27
+ beta_schedule: "linear"
28
+ clip_sample: false
29
+ steps_offset: 1
30
+ ### Zero-SNR params
31
+ prediction_type: "v_prediction"
32
+ rescale_betas_zero_snr: True
33
+ timestep_spacing: "trailing"
34
+
35
+ sampler: DDIM
configs/test_stage.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ pretrained_base_model_path: './pretrained_weights/sd-image-variations-diffusers'
2
+ pretrained_vae_path: './pretrained_weights/sd-vae-ft-mse'
3
+ image_encoder_path: './pretrained_weights/image_encoder'
4
+
5
+
6
+
7
+ denoising_unet_path: "./pretrained_weights/MusePose/denoising_unet.pth"
8
+ reference_unet_path: "./pretrained_weights/MusePose/reference_unet.pth"
9
+ pose_guider_path: "./pretrained_weights/MusePose/pose_guider.pth"
10
+ motion_module_path: "./pretrained_weights/MusePose/motion_module.pth"
11
+
12
+
13
+
14
+ inference_config: "./configs/inference_v2.yaml"
15
+ weight_dtype: 'fp16'
16
+
17
+
18
+
19
+ test_cases:
20
+ "./assets/images/ref.png":
21
+ - "./assets/poses/align/img_ref_video_dance.mp4"
downloading_weights.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import wget
3
+ from tqdm import tqdm
4
+
5
+ os.makedirs('pretrained_weights', exist_ok=True)
6
+
7
+ urls = ['https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth',
8
+ 'https://huggingface.co/yzd-v/DWPose/resolve/main/dw-ll_ucoco_384.pth',
9
+ 'https://huggingface.co/TMElyralab/MusePose/resolve/main/MusePose/denoising_unet.pth',
10
+ 'https://huggingface.co/TMElyralab/MusePose/resolve/main/MusePose/motion_module.pth',
11
+ 'https://huggingface.co/TMElyralab/MusePose/resolve/main/MusePose/pose_guider.pth',
12
+ 'https://huggingface.co/TMElyralab/MusePose/resolve/main/MusePose/reference_unet.pth',
13
+ 'https://huggingface.co/lambdalabs/sd-image-variations-diffusers/resolve/main/unet/diffusion_pytorch_model.bin',
14
+ 'https://huggingface.co/lambdalabs/sd-image-variations-diffusers/resolve/main/image_encoder/pytorch_model.bin',
15
+ 'https://huggingface.co/stabilityai/sd-vae-ft-mse/resolve/main/diffusion_pytorch_model.bin'
16
+ ]
17
+
18
+ paths = ['dwpose', 'dwpose', 'MusePose', 'MusePose', 'MusePose', 'MusePose', 'sd-image-variations-diffusers/unet', 'image_encoder', 'sd-vae-ft-mse']
19
+
20
+ for path in paths:
21
+ os.makedirs(f'pretrained_weights/{path}', exist_ok=True)
22
+
23
+ # saving weights
24
+ for url, path in tqdm(zip(urls, paths)):
25
+ filename = wget.download(url, f'pretrained_weights/{path}')
26
+
27
+ config_urls = ['https://huggingface.co/lambdalabs/sd-image-variations-diffusers/resolve/main/unet/config.json',
28
+ 'https://huggingface.co/lambdalabs/sd-image-variations-diffusers/resolve/main/image_encoder/config.json',
29
+ 'https://huggingface.co/stabilityai/sd-vae-ft-mse/resolve/main/config.json']
30
+
31
+ config_paths = ['sd-image-variations-diffusers/unet', 'image_encoder', 'sd-vae-ft-mse']
32
+
33
+ # saving config files
34
+ for url, path in tqdm(zip(config_urls, config_paths)):
35
+ filename = wget.download(url, f'pretrained_weights/{path}')
36
+
37
+ # renaming model name as given in readme
38
+ os.rename('pretrained_weights/dwpose/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth', 'pretrained_weights/dwpose/yolox_l_8x8_300e_coco.pth')
draw_dwpose.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import argparse
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+ from PIL import Image
7
+
8
+ from pose.script.tool import save_videos_from_pil
9
+ from pose.script.dwpose import draw_pose
10
+
11
+
12
+
13
+ def draw_dwpose(video_path, pose_path, out_path, draw_face):
14
+
15
+ # capture video info
16
+ cap = cv2.VideoCapture(video_path)
17
+ width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
18
+ height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
19
+ fps = cap.get(cv2.CAP_PROP_FPS)
20
+ fps = int(np.around(fps))
21
+ # fps = get_fps(video_path)
22
+ cap.release()
23
+
24
+ # render resolution, short edge = 1024
25
+ k = float(1024) / min(width, height)
26
+ h_render = int(k*height//2 * 2)
27
+ w_render = int(k*width//2 * 2)
28
+
29
+ # save resolution, short edge = 768
30
+ k = float(768) / min(width, height)
31
+ h_save = int(k*height//2 * 2)
32
+ w_save = int(k*width//2 * 2)
33
+
34
+ poses = np.load(pose_path, allow_pickle=True)
35
+ poses = poses.tolist()
36
+
37
+ frames = []
38
+ for pose in tqdm(poses):
39
+ detected_map = draw_pose(pose, h_render, w_render, draw_face)
40
+ detected_map = cv2.resize(detected_map, (w_save, h_save), interpolation=cv2.INTER_AREA)
41
+ # cv2.imshow('', detected_map)
42
+ # cv2.waitKey(0)
43
+ detected_map = cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB)
44
+ detected_map = Image.fromarray(detected_map)
45
+ frames.append(detected_map)
46
+
47
+ save_videos_from_pil(frames, out_path, fps)
48
+
49
+
50
+
51
+ if __name__ == "__main__":
52
+
53
+ parser = argparse.ArgumentParser()
54
+ parser.add_argument("--video_dir", type=str, default="./UBC_fashion/test", help='dance video dir')
55
+ parser.add_argument("--pose_dir", type=str, default=None, help='auto makedir')
56
+ parser.add_argument("--save_dir", type=str, default=None, help='auto makedir')
57
+ parser.add_argument("--draw_face", type=bool, default=False, help='whether draw face or not')
58
+ args = parser.parse_args()
59
+
60
+
61
+ # video dir
62
+ video_dir = args.video_dir
63
+
64
+ # pose dir
65
+ if args.pose_dir is None:
66
+ pose_dir = args.video_dir + "_dwpose_keypoints"
67
+ else:
68
+ pose_dir = args.pose_dir
69
+
70
+ # save dir
71
+ if args.save_dir is None:
72
+ if args.draw_face == True:
73
+ save_dir = args.video_dir + "_dwpose"
74
+ else:
75
+ save_dir = args.video_dir + "_dwpose_without_face"
76
+ else:
77
+ save_dir = args.save_dir
78
+ if not os.path.exists(save_dir):
79
+ os.makedirs(save_dir)
80
+
81
+
82
+ # collect all video_folder paths
83
+ video_mp4_paths = set()
84
+ for root, dirs, files in os.walk(args.video_dir):
85
+ for name in files:
86
+ if name.endswith(".mp4"):
87
+ video_mp4_paths.add(os.path.join(root, name))
88
+ video_mp4_paths = list(video_mp4_paths)
89
+ # random.shuffle(video_mp4_paths)
90
+ video_mp4_paths.sort()
91
+ print("Num of videos:", len(video_mp4_paths))
92
+
93
+
94
+ # draw dwpose
95
+ for i in range(len(video_mp4_paths)):
96
+ video_path = video_mp4_paths[i]
97
+ video_name = os.path.relpath(video_path, video_dir)
98
+ base_name = os.path.splitext(video_name)[0]
99
+
100
+ pose_path = os.path.join(pose_dir, base_name + '.npy')
101
+ if not os.path.exists(pose_path):
102
+ print('no keypoint file:', pose_path)
103
+
104
+ out_path = os.path.join(save_dir, base_name + '.mp4')
105
+ if os.path.exists(out_path):
106
+ print('already have rendered pose:', out_path)
107
+ continue
108
+
109
+ draw_dwpose(video_path, pose_path, out_path, args.draw_face)
110
+ print(f"Process {i+1}/{len(video_mp4_paths)} video")
111
+
112
+ print('all done!')
gradio_app.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from musepose_inference import MusePoseInference
3
+ from pose_align import PoseAlignmentInference
4
+
5
+ class App:
6
+ def __init__(self):
7
+ self.pose_alignment_infer = MusePoseInference()
8
+ self.musepose_infer = PoseAlignmentInference()
9
+
10
+ def musepose_demo(self):
11
+ with gr.Blocks() as demo:
12
+ with gr.Tabs():
13
+ with gr.TabItem('Step1: Pose Alignment'):
14
+ with gr.Row():
15
+ with gr.Column(scale=3):
16
+ img_input = gr.Image(label="Input Image here", type="filepath", scale=5)
17
+ vid_dance_input = gr.Video(label="Input Dance Video", scale=5)
18
+ with gr.Column(scale=3):
19
+ vid_dance_output = gr.Video(label="Aligned pose output will be displayed here", scale=5)
20
+ vid_dance_output_demo = gr.Video(label="Output demo video will be displayed here", scale=5)
21
+ with gr.Column(scale=3):
22
+ with gr.Column():
23
+ nb_detect_resolution = gr.Number(label="Detect Resolution", value=512, precision=0)
24
+ nb_image_resolution = gr.Number(label="Image Resolution.", value=720, precision=0)
25
+ nb_align_frame = gr.Number(label="Align Frame", value=0, precision=0)
26
+ nb_max_frame = gr.Number(label="Max Frame", value=300, precision=0)
27
+
28
+ with gr.Row():
29
+ btn_algin_pose = gr.Button("ALIGN POSE", variant="primary")
30
+
31
+ btn_algin_pose.click(fn=self.pose_alignment_infer.align_pose,
32
+ inputs=[vid_dance_input, img_input, nb_detect_resolution, nb_image_resolution,
33
+ nb_align_frame, nb_max_frame],
34
+ outputs=[vid_dance_output, vid_dance_output_demo])
35
+
36
+ with gr.TabItem('Step2: MusePose Inference'):
37
+ with gr.Row():
38
+ with gr.Column(scale=3):
39
+ img_input = gr.Image(label="Input Image here", type="filepath", scale=5)
40
+ vid_pose_input = gr.Video(label="Input Aligned Pose Video here", scale=5)
41
+ with gr.Column(scale=3):
42
+ vid_output = gr.Video(label="Output Video will be displayed here", scale=5)
43
+ vid_output_demo = gr.Video(label="Output demo video will be displayed here", scale=5)
44
+
45
+ with gr.Column(scale=3):
46
+ with gr.Column():
47
+ weight_dtype = gr.Dropdown(label="Compute Type", choices=["fp16", "fp32"],
48
+ value="fp16")
49
+ nb_width = gr.Number(label="Width.", value=512, precision=0)
50
+ nb_height = gr.Number(label="Height.", value=512, precision=0)
51
+ nb_video_frame_length = gr.Number(label="Video Frame Length", value=300, precision=0)
52
+ nb_video_slice_frame_length = gr.Number(label="Video Slice Frame Number", value=48,
53
+ precision=0)
54
+ nb_video_slice_overlap_frame_number = gr.Number(
55
+ label="Video Slice Overlap Frame Number", value=4, precision=0)
56
+ nb_cfg = gr.Number(label="CFG (Classifier Free Guidance)", value=3.5, precision=0)
57
+ nb_seed = gr.Number(label="Seed", value=99, precision=0)
58
+ nb_steps = gr.Number(label="DDIM Sampling Steps", value=20, precision=0)
59
+ nb_fps = gr.Number(label="FPS (Frames Per Second) ", value=-1, precision=0,
60
+ info="Set to '-1' to use same FPS with pose's")
61
+ nb_skip = gr.Number(label="SKIP (Frame Sample Rate = SKIP+1)", value=1, precision=0)
62
+
63
+ with gr.Row():
64
+ btn_generate = gr.Button("GENERATE", variant="primary")
65
+
66
+ btn_generate.click(fn=self.musepose_infer.infer_musepose,
67
+ inputs=[img_input, vid_pose_input, weight_dtype, nb_width, nb_height,
68
+ nb_video_frame_length,
69
+ nb_video_slice_frame_length, nb_video_slice_overlap_frame_number, nb_cfg,
70
+ nb_seed,
71
+ nb_steps, nb_fps, nb_skip],
72
+ outputs=[vid_output, vid_output_demo])
73
+ return demo
74
+
75
+ def launch(self):
76
+ demo = self.musepose_demo()
77
+ demo.queue().launch()
musepose_inference.py ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from datetime import datetime
3
+ from pathlib import Path
4
+
5
+ import torch
6
+ from diffusers import AutoencoderKL, DDIMScheduler
7
+ from einops import repeat
8
+ from omegaconf import OmegaConf
9
+ from PIL import Image
10
+ from torchvision import transforms
11
+ from transformers import CLIPVisionModelWithProjection
12
+ import torch.nn.functional as F
13
+ import gc
14
+ from huggingface_hub import hf_hub_download
15
+
16
+ from musepose.models.pose_guider import PoseGuider
17
+ from musepose.models.unet_2d_condition import UNet2DConditionModel
18
+ from musepose.models.unet_3d import UNet3DConditionModel
19
+ from musepose.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
20
+ from musepose.utils.util import get_fps, read_frames, save_videos_grid
21
+
22
+
23
+ class MusePoseInference:
24
+ def __init__(self):
25
+ self.image_gen_model_paths = {
26
+ "pretrained_base_model": "lambdalabs/sd-image-variations-diffusers/unet",
27
+ "pretrained_vae": "stabilityai/sd-vae-ft-mse",
28
+ "image_encoder": "lambdalabs/sd-image-variations-diffusers/image_encoder",
29
+ }
30
+ self.musepose_model_paths = {
31
+ "denoising_unet": os.path.join("pretrained_weights", "MusePose", "denoising_unet.pth"),
32
+ "reference_unet": os.path.join("pretrained_weights", "MusePose", "reference_unet.pth"),
33
+ "pose_guider": os.path.join("pretrained_weights", "MusePose", "pose_guider.pth"),
34
+ "motion_module": os.path.join("pretrained_weights", "MusePose", "pose_guider.pth"),
35
+ }
36
+ self.inference_config_path = os.path.join("configs", "inference_v2.yaml")
37
+ self.vae = None
38
+ self.reference_unet = None
39
+ self.denoising_unet = None
40
+ self.pose_guider = None
41
+ self.image_enc = None
42
+ self.pipe = None
43
+ self.output_dir = os.path.join("assets", "video")
44
+ #self.download_models()
45
+
46
+ def infer_musepose(
47
+ self,
48
+ ref_image_path: str,
49
+ pose_video_path: str,
50
+ weight_dtype: str,
51
+ W: int,
52
+ H: int,
53
+ L: int,
54
+ S: int,
55
+ O: int,
56
+ cfg: float,
57
+ seed: int,
58
+ steps: int,
59
+ fps: int,
60
+ skip: int
61
+ ):
62
+ print(f"Model Paths: {self.musepose_model_paths}\n{self.image_gen_model_paths}\n{self.inference_config_path}")
63
+ print(f"Input Image Path: {ref_image_path}")
64
+ print(f"Pose Video Path: {pose_video_path}")
65
+ print(f"Dtype: {weight_dtype}")
66
+ print(f"Width: {W}")
67
+ print(f"Height: {H}")
68
+ print(f"Video Frame Length: {L}")
69
+ print(f"VIDEO SLICE FRAME LENGTH:: {S}")
70
+ print(f"VIDEO SLICE OVERLAP_FRAME NUMBER: {O}")
71
+ print(f"CFG: {cfg}")
72
+ print(f"Seed: {seed}")
73
+ print(f"Steps: {steps}")
74
+ print(f"FPS: {fps}")
75
+ print(f"Skip: {skip}")
76
+
77
+ image_file_name = os.path.splitext(os.path.basename(ref_image_path))[0]
78
+ pose_video_file_name = os.path.splitext(os.path.basename(pose_video_path))[0]
79
+ output_file_name = f"img_{image_file_name}_pose_{pose_video_file_name}"
80
+ output_path = os.path.abspath(os.path.join(self.output_dir, f'{output_file_name}.mp4'))
81
+ output_path_demo = os.path.abspath(os.path.join(self.output_dir, f'{output_file_name}_demo.mp4'))
82
+
83
+ if weight_dtype == "fp16":
84
+ weight_dtype = torch.float16
85
+ else:
86
+ weight_dtype = torch.float32
87
+
88
+ self.vae = AutoencoderKL.from_pretrained(
89
+ self.image_gen_model_paths["pretrained_vae"],
90
+ ).to("cuda", dtype=weight_dtype)
91
+
92
+ self.reference_unet = UNet2DConditionModel.from_pretrained(
93
+ self.image_gen_model_paths["pretrained_base_model"],
94
+ subfolder="unet",
95
+ ).to(dtype=weight_dtype, device="cuda")
96
+
97
+ inference_config_path = self.inference_config_path
98
+ infer_config = OmegaConf.load(inference_config_path)
99
+
100
+ self.denoising_unet = UNet3DConditionModel.from_pretrained_2d(
101
+ Path(self.image_gen_model_paths["pretrained_base_model"]),
102
+ Path(self.musepose_model_paths["motion_module"]),
103
+ subfolder="unet",
104
+ unet_additional_kwargs=infer_config.unet_additional_kwargs,
105
+ ).to(dtype=weight_dtype, device="cuda")
106
+
107
+ self.pose_guider = PoseGuider(320, block_out_channels=(16, 32, 96, 256)).to(
108
+ dtype=weight_dtype, device="cuda"
109
+ )
110
+
111
+ self.image_enc = CLIPVisionModelWithProjection.from_pretrained(
112
+ self.image_gen_model_paths["image_encoder"]
113
+ ).to(dtype=weight_dtype, device="cuda")
114
+
115
+ sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
116
+ scheduler = DDIMScheduler(**sched_kwargs)
117
+
118
+ generator = torch.manual_seed(seed)
119
+
120
+ width, height = W, H
121
+
122
+ # load pretrained weights
123
+ self.denoising_unet.load_state_dict(
124
+ torch.load(self.musepose_model_paths["denoising_unet"], map_location="cpu"),
125
+ strict=False,
126
+ )
127
+ self.reference_unet.load_state_dict(
128
+ torch.load(self.musepose_model_paths["reference_unet"], map_location="cpu"),
129
+ )
130
+ self.pose_guider.load_state_dict(
131
+ torch.load(self.musepose_model_paths["pose_guider"], map_location="cpu"),
132
+ )
133
+ self.pipe = Pose2VideoPipeline(
134
+ vae=self.vae,
135
+ image_encoder=self.image_enc,
136
+ reference_unet=self.reference_unet,
137
+ denoising_unet=self.denoising_unet,
138
+ pose_guider=self.pose_guider,
139
+ scheduler=scheduler,
140
+ )
141
+ self.pipe = self.pipe.to("cuda", dtype=weight_dtype)
142
+
143
+ print("image: ", ref_image_path, "pose_video: ", pose_video_path)
144
+
145
+ ref_image_pil = Image.open(ref_image_path).convert("RGB")
146
+
147
+ pose_list = []
148
+ pose_tensor_list = []
149
+ pose_images = read_frames(pose_video_path)
150
+ src_fps = get_fps(pose_video_path)
151
+ print(f"pose video has {len(pose_images)} frames, with {src_fps} fps")
152
+ L = min(L, len(pose_images))
153
+ pose_transform = transforms.Compose(
154
+ [transforms.Resize((height, width)), transforms.ToTensor()]
155
+ )
156
+ original_width, original_height = 0, 0
157
+
158
+ pose_images = pose_images[::skip + 1]
159
+ print("processing length:", len(pose_images))
160
+ src_fps = src_fps // (skip + 1)
161
+ print("fps", src_fps)
162
+ L = L // ((skip + 1))
163
+
164
+ for pose_image_pil in pose_images[: L]:
165
+ pose_tensor_list.append(pose_transform(pose_image_pil))
166
+ pose_list.append(pose_image_pil)
167
+ original_width, original_height = pose_image_pil.size
168
+ pose_image_pil = pose_image_pil.resize((width, height))
169
+
170
+ # repeart the last segment
171
+ last_segment_frame_num = (L - S) % (S - O)
172
+ repeart_frame_num = (S - O - last_segment_frame_num) % (S - O)
173
+ for i in range(repeart_frame_num):
174
+ pose_list.append(pose_list[-1])
175
+ pose_tensor_list.append(pose_tensor_list[-1])
176
+
177
+ ref_image_tensor = pose_transform(ref_image_pil) # (c, h, w)
178
+ ref_image_tensor = ref_image_tensor.unsqueeze(1).unsqueeze(0) # (1, c, 1, h, w)
179
+ ref_image_tensor = repeat(ref_image_tensor, "b c f h w -> b c (repeat f) h w", repeat=L)
180
+
181
+ pose_tensor = torch.stack(pose_tensor_list, dim=0) # (f, c, h, w)
182
+ pose_tensor = pose_tensor.transpose(0, 1)
183
+ pose_tensor = pose_tensor.unsqueeze(0)
184
+
185
+ video = self.pipe(
186
+ ref_image_pil,
187
+ pose_list,
188
+ width,
189
+ height,
190
+ len(pose_list),
191
+ steps,
192
+ cfg,
193
+ generator=generator,
194
+ context_frames=S,
195
+ context_stride=1,
196
+ context_overlap=O,
197
+ ).videos
198
+
199
+ result = self.scale_video(video[:, :, :L], original_width, original_height)
200
+ save_videos_grid(
201
+ result,
202
+ output_path,
203
+ n_rows=1,
204
+ fps=src_fps if fps is None or fps < 0 else fps,
205
+ )
206
+
207
+ video = torch.cat([ref_image_tensor, pose_tensor[:, :, :L], video[:, :, :L]], dim=0)
208
+ video = self.scale_video(video, original_width, original_height)
209
+ save_videos_grid(
210
+ video,
211
+ output_path_demo,
212
+ n_rows=3,
213
+ fps=src_fps if fps is None or fps < 0 else fps,
214
+ )
215
+ self.release_vram()
216
+ return output_path, output_path_demo
217
+
218
+ def download_models(self):
219
+ repo_id = 'jhj0517/MusePose'
220
+ for name, file_path in self.musepose_model_paths.items():
221
+ local_dir, filename = os.path.dirname(file_path), os.path.basename(file_path)
222
+ if not os.path.exists(local_dir):
223
+ os.makedirs(local_dir)
224
+
225
+ remote_filepath = os.path.join("MusePose", filename)
226
+ if not os.path.exists(file_path):
227
+ hf_hub_download(repo_id=repo_id, filename=remote_filepath,
228
+ local_dir=local_dir,
229
+ local_dir_use_symlinks=False)
230
+
231
+ def release_vram(self):
232
+ models = [
233
+ 'vae', 'reference_unet', 'denoising_unet',
234
+ 'pose_guider', 'image_enc', 'pipe'
235
+ ]
236
+
237
+ for model_name in models:
238
+ model = getattr(self, model_name, None)
239
+ if model is not None:
240
+ del model
241
+ setattr(self, model_name, None)
242
+
243
+ if torch.cuda.is_available():
244
+ torch.cuda.empty_cache()
245
+ gc.collect()
246
+
247
+ @staticmethod
248
+ def scale_video(video, width, height):
249
+ video_reshaped = video.view(-1, *video.shape[2:]) # [batch*frames, channels, height, width]
250
+ scaled_video = F.interpolate(video_reshaped, size=(height, width), mode='bilinear', align_corners=False)
251
+ scaled_video = scaled_video.view(*video.shape[:2], scaled_video.shape[1], height,
252
+ width) # [batch, frames, channels, height, width]
253
+
254
+ return scaled_video
pose/config/dwpose-l_384x288.py ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # runtime
2
+ max_epochs = 270
3
+ stage2_num_epochs = 30
4
+ base_lr = 4e-3
5
+
6
+ train_cfg = dict(max_epochs=max_epochs, val_interval=10)
7
+ randomness = dict(seed=21)
8
+
9
+ # optimizer
10
+ optim_wrapper = dict(
11
+ type='OptimWrapper',
12
+ optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
13
+ paramwise_cfg=dict(
14
+ norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
15
+
16
+ # learning rate
17
+ param_scheduler = [
18
+ dict(
19
+ type='LinearLR',
20
+ start_factor=1.0e-5,
21
+ by_epoch=False,
22
+ begin=0,
23
+ end=1000),
24
+ dict(
25
+ # use cosine lr from 150 to 300 epoch
26
+ type='CosineAnnealingLR',
27
+ eta_min=base_lr * 0.05,
28
+ begin=max_epochs // 2,
29
+ end=max_epochs,
30
+ T_max=max_epochs // 2,
31
+ by_epoch=True,
32
+ convert_to_iter_based=True),
33
+ ]
34
+
35
+ # automatically scaling LR based on the actual training batch size
36
+ auto_scale_lr = dict(base_batch_size=512)
37
+
38
+ # codec settings
39
+ codec = dict(
40
+ type='SimCCLabel',
41
+ input_size=(288, 384),
42
+ sigma=(6., 6.93),
43
+ simcc_split_ratio=2.0,
44
+ normalize=False,
45
+ use_dark=False)
46
+
47
+ # model settings
48
+ model = dict(
49
+ type='TopdownPoseEstimator',
50
+ data_preprocessor=dict(
51
+ type='PoseDataPreprocessor',
52
+ mean=[123.675, 116.28, 103.53],
53
+ std=[58.395, 57.12, 57.375],
54
+ bgr_to_rgb=True),
55
+ backbone=dict(
56
+ _scope_='mmdet',
57
+ type='CSPNeXt',
58
+ arch='P5',
59
+ expand_ratio=0.5,
60
+ deepen_factor=1.,
61
+ widen_factor=1.,
62
+ out_indices=(4, ),
63
+ channel_attention=True,
64
+ norm_cfg=dict(type='SyncBN'),
65
+ act_cfg=dict(type='SiLU'),
66
+ init_cfg=dict(
67
+ type='Pretrained',
68
+ prefix='backbone.',
69
+ checkpoint='https://download.openmmlab.com/mmpose/v1/projects/'
70
+ 'rtmpose/cspnext-l_udp-aic-coco_210e-256x192-273b7631_20230130.pth' # noqa
71
+ )),
72
+ head=dict(
73
+ type='RTMCCHead',
74
+ in_channels=1024,
75
+ out_channels=133,
76
+ input_size=codec['input_size'],
77
+ in_featuremap_size=(9, 12),
78
+ simcc_split_ratio=codec['simcc_split_ratio'],
79
+ final_layer_kernel_size=7,
80
+ gau_cfg=dict(
81
+ hidden_dims=256,
82
+ s=128,
83
+ expansion_factor=2,
84
+ dropout_rate=0.,
85
+ drop_path=0.,
86
+ act_fn='SiLU',
87
+ use_rel_bias=False,
88
+ pos_enc=False),
89
+ loss=dict(
90
+ type='KLDiscretLoss',
91
+ use_target_weight=True,
92
+ beta=10.,
93
+ label_softmax=True),
94
+ decoder=codec),
95
+ test_cfg=dict(flip_test=True, ))
96
+
97
+ # base dataset settings
98
+ dataset_type = 'CocoWholeBodyDataset'
99
+ data_mode = 'topdown'
100
+ data_root = '/data/'
101
+
102
+ backend_args = dict(backend='local')
103
+ # backend_args = dict(
104
+ # backend='petrel',
105
+ # path_mapping=dict({
106
+ # f'{data_root}': 's3://openmmlab/datasets/detection/coco/',
107
+ # f'{data_root}': 's3://openmmlab/datasets/detection/coco/'
108
+ # }))
109
+
110
+ # pipelines
111
+ train_pipeline = [
112
+ dict(type='LoadImage', backend_args=backend_args),
113
+ dict(type='GetBBoxCenterScale'),
114
+ dict(type='RandomFlip', direction='horizontal'),
115
+ dict(type='RandomHalfBody'),
116
+ dict(
117
+ type='RandomBBoxTransform', scale_factor=[0.6, 1.4], rotate_factor=80),
118
+ dict(type='TopdownAffine', input_size=codec['input_size']),
119
+ dict(type='mmdet.YOLOXHSVRandomAug'),
120
+ dict(
121
+ type='Albumentation',
122
+ transforms=[
123
+ dict(type='Blur', p=0.1),
124
+ dict(type='MedianBlur', p=0.1),
125
+ dict(
126
+ type='CoarseDropout',
127
+ max_holes=1,
128
+ max_height=0.4,
129
+ max_width=0.4,
130
+ min_holes=1,
131
+ min_height=0.2,
132
+ min_width=0.2,
133
+ p=1.0),
134
+ ]),
135
+ dict(type='GenerateTarget', encoder=codec),
136
+ dict(type='PackPoseInputs')
137
+ ]
138
+ val_pipeline = [
139
+ dict(type='LoadImage', backend_args=backend_args),
140
+ dict(type='GetBBoxCenterScale'),
141
+ dict(type='TopdownAffine', input_size=codec['input_size']),
142
+ dict(type='PackPoseInputs')
143
+ ]
144
+
145
+ train_pipeline_stage2 = [
146
+ dict(type='LoadImage', backend_args=backend_args),
147
+ dict(type='GetBBoxCenterScale'),
148
+ dict(type='RandomFlip', direction='horizontal'),
149
+ dict(type='RandomHalfBody'),
150
+ dict(
151
+ type='RandomBBoxTransform',
152
+ shift_factor=0.,
153
+ scale_factor=[0.75, 1.25],
154
+ rotate_factor=60),
155
+ dict(type='TopdownAffine', input_size=codec['input_size']),
156
+ dict(type='mmdet.YOLOXHSVRandomAug'),
157
+ dict(
158
+ type='Albumentation',
159
+ transforms=[
160
+ dict(type='Blur', p=0.1),
161
+ dict(type='MedianBlur', p=0.1),
162
+ dict(
163
+ type='CoarseDropout',
164
+ max_holes=1,
165
+ max_height=0.4,
166
+ max_width=0.4,
167
+ min_holes=1,
168
+ min_height=0.2,
169
+ min_width=0.2,
170
+ p=0.5),
171
+ ]),
172
+ dict(type='GenerateTarget', encoder=codec),
173
+ dict(type='PackPoseInputs')
174
+ ]
175
+
176
+ datasets = []
177
+ dataset_coco=dict(
178
+ type=dataset_type,
179
+ data_root=data_root,
180
+ data_mode=data_mode,
181
+ ann_file='coco/annotations/coco_wholebody_train_v1.0.json',
182
+ data_prefix=dict(img='coco/train2017/'),
183
+ pipeline=[],
184
+ )
185
+ datasets.append(dataset_coco)
186
+
187
+ scene = ['Magic_show', 'Entertainment', 'ConductMusic', 'Online_class',
188
+ 'TalkShow', 'Speech', 'Fitness', 'Interview', 'Olympic', 'TVShow',
189
+ 'Singing', 'SignLanguage', 'Movie', 'LiveVlog', 'VideoConference']
190
+
191
+ for i in range(len(scene)):
192
+ datasets.append(
193
+ dict(
194
+ type=dataset_type,
195
+ data_root=data_root,
196
+ data_mode=data_mode,
197
+ ann_file='UBody/annotations/'+scene[i]+'/keypoint_annotation.json',
198
+ data_prefix=dict(img='UBody/images/'+scene[i]+'/'),
199
+ pipeline=[],
200
+ )
201
+ )
202
+
203
+ # data loaders
204
+ train_dataloader = dict(
205
+ batch_size=32,
206
+ num_workers=10,
207
+ persistent_workers=True,
208
+ sampler=dict(type='DefaultSampler', shuffle=True),
209
+ dataset=dict(
210
+ type='CombinedDataset',
211
+ metainfo=dict(from_file='configs/_base_/datasets/coco_wholebody.py'),
212
+ datasets=datasets,
213
+ pipeline=train_pipeline,
214
+ test_mode=False,
215
+ ))
216
+ val_dataloader = dict(
217
+ batch_size=32,
218
+ num_workers=10,
219
+ persistent_workers=True,
220
+ drop_last=False,
221
+ sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
222
+ dataset=dict(
223
+ type=dataset_type,
224
+ data_root=data_root,
225
+ data_mode=data_mode,
226
+ ann_file='coco/annotations/coco_wholebody_val_v1.0.json',
227
+ bbox_file=f'{data_root}coco/person_detection_results/'
228
+ 'COCO_val2017_detections_AP_H_56_person.json',
229
+ data_prefix=dict(img='coco/val2017/'),
230
+ test_mode=True,
231
+ pipeline=val_pipeline,
232
+ ))
233
+ test_dataloader = val_dataloader
234
+
235
+ # hooks
236
+ default_hooks = dict(
237
+ checkpoint=dict(
238
+ save_best='coco-wholebody/AP', rule='greater', max_keep_ckpts=1))
239
+
240
+ custom_hooks = [
241
+ dict(
242
+ type='EMAHook',
243
+ ema_type='ExpMomentumEMA',
244
+ momentum=0.0002,
245
+ update_buffers=True,
246
+ priority=49),
247
+ dict(
248
+ type='mmdet.PipelineSwitchHook',
249
+ switch_epoch=max_epochs - stage2_num_epochs,
250
+ switch_pipeline=train_pipeline_stage2)
251
+ ]
252
+
253
+ # evaluators
254
+ val_evaluator = dict(
255
+ type='CocoWholeBodyMetric',
256
+ ann_file=data_root + 'coco/annotations/coco_wholebody_val_v1.0.json')
257
+ test_evaluator = val_evaluator
pose/config/yolox_l_8xb8-300e_coco.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ img_scale = (640, 640) # width, height
2
+
3
+ # model settings
4
+ model = dict(
5
+ type='YOLOX',
6
+ data_preprocessor=dict(
7
+ type='DetDataPreprocessor',
8
+ pad_size_divisor=32,
9
+ batch_augments=[
10
+ dict(
11
+ type='BatchSyncRandomResize',
12
+ random_size_range=(480, 800),
13
+ size_divisor=32,
14
+ interval=10)
15
+ ]),
16
+ backbone=dict(
17
+ type='CSPDarknet',
18
+ deepen_factor=1.0,
19
+ widen_factor=1.0,
20
+ out_indices=(2, 3, 4),
21
+ use_depthwise=False,
22
+ spp_kernal_sizes=(5, 9, 13),
23
+ norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
24
+ act_cfg=dict(type='Swish'),
25
+ ),
26
+ neck=dict(
27
+ type='YOLOXPAFPN',
28
+ in_channels=[256, 512, 1024],
29
+ out_channels=256,
30
+ num_csp_blocks=3,
31
+ use_depthwise=False,
32
+ upsample_cfg=dict(scale_factor=2, mode='nearest'),
33
+ norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
34
+ act_cfg=dict(type='Swish')),
35
+ bbox_head=dict(
36
+ type='YOLOXHead',
37
+ num_classes=80,
38
+ in_channels=256,
39
+ feat_channels=256,
40
+ stacked_convs=2,
41
+ strides=(8, 16, 32),
42
+ use_depthwise=False,
43
+ norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
44
+ act_cfg=dict(type='Swish'),
45
+ loss_cls=dict(
46
+ type='CrossEntropyLoss',
47
+ use_sigmoid=True,
48
+ reduction='sum',
49
+ loss_weight=1.0),
50
+ loss_bbox=dict(
51
+ type='IoULoss',
52
+ mode='square',
53
+ eps=1e-16,
54
+ reduction='sum',
55
+ loss_weight=5.0),
56
+ loss_obj=dict(
57
+ type='CrossEntropyLoss',
58
+ use_sigmoid=True,
59
+ reduction='sum',
60
+ loss_weight=1.0),
61
+ loss_l1=dict(type='L1Loss', reduction='sum', loss_weight=1.0)),
62
+ train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)),
63
+ # In order to align the source code, the threshold of the val phase is
64
+ # 0.01, and the threshold of the test phase is 0.001.
65
+ test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65)))
66
+
67
+ # dataset settings
68
+ data_root = 'data/coco/'
69
+ dataset_type = 'CocoDataset'
70
+
71
+ # Example to use different file client
72
+ # Method 1: simply set the data root and let the file I/O module
73
+ # automatically infer from prefix (not support LMDB and Memcache yet)
74
+
75
+ # data_root = 's3://openmmlab/datasets/detection/coco/'
76
+
77
+ # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
78
+ # backend_args = dict(
79
+ # backend='petrel',
80
+ # path_mapping=dict({
81
+ # './data/': 's3://openmmlab/datasets/detection/',
82
+ # 'data/': 's3://openmmlab/datasets/detection/'
83
+ # }))
84
+ backend_args = None
85
+
86
+ train_pipeline = [
87
+ dict(type='Mosaic', img_scale=img_scale, pad_val=114.0),
88
+ dict(
89
+ type='RandomAffine',
90
+ scaling_ratio_range=(0.1, 2),
91
+ # img_scale is (width, height)
92
+ border=(-img_scale[0] // 2, -img_scale[1] // 2)),
93
+ dict(
94
+ type='MixUp',
95
+ img_scale=img_scale,
96
+ ratio_range=(0.8, 1.6),
97
+ pad_val=114.0),
98
+ dict(type='YOLOXHSVRandomAug'),
99
+ dict(type='RandomFlip', prob=0.5),
100
+ # According to the official implementation, multi-scale
101
+ # training is not considered here but in the
102
+ # 'mmdet/models/detectors/yolox.py'.
103
+ # Resize and Pad are for the last 15 epochs when Mosaic,
104
+ # RandomAffine, and MixUp are closed by YOLOXModeSwitchHook.
105
+ dict(type='Resize', scale=img_scale, keep_ratio=True),
106
+ dict(
107
+ type='Pad',
108
+ pad_to_square=True,
109
+ # If the image is three-channel, the pad value needs
110
+ # to be set separately for each channel.
111
+ pad_val=dict(img=(114.0, 114.0, 114.0))),
112
+ dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
113
+ dict(type='PackDetInputs')
114
+ ]
115
+
116
+ train_dataset = dict(
117
+ # use MultiImageMixDataset wrapper to support mosaic and mixup
118
+ type='MultiImageMixDataset',
119
+ dataset=dict(
120
+ type=dataset_type,
121
+ data_root=data_root,
122
+ ann_file='annotations/instances_train2017.json',
123
+ data_prefix=dict(img='train2017/'),
124
+ pipeline=[
125
+ dict(type='LoadImageFromFile', backend_args=backend_args),
126
+ dict(type='LoadAnnotations', with_bbox=True)
127
+ ],
128
+ filter_cfg=dict(filter_empty_gt=False, min_size=32),
129
+ backend_args=backend_args),
130
+ pipeline=train_pipeline)
131
+
132
+ test_pipeline = [
133
+ dict(type='LoadImageFromFile', backend_args=backend_args),
134
+ dict(type='Resize', scale=img_scale, keep_ratio=True),
135
+ dict(
136
+ type='Pad',
137
+ pad_to_square=True,
138
+ pad_val=dict(img=(114.0, 114.0, 114.0))),
139
+ dict(type='LoadAnnotations', with_bbox=True),
140
+ dict(
141
+ type='PackDetInputs',
142
+ meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
143
+ 'scale_factor'))
144
+ ]
145
+
146
+ train_dataloader = dict(
147
+ batch_size=8,
148
+ num_workers=4,
149
+ persistent_workers=True,
150
+ sampler=dict(type='DefaultSampler', shuffle=True),
151
+ dataset=train_dataset)
152
+ val_dataloader = dict(
153
+ batch_size=8,
154
+ num_workers=4,
155
+ persistent_workers=True,
156
+ drop_last=False,
157
+ sampler=dict(type='DefaultSampler', shuffle=False),
158
+ dataset=dict(
159
+ type=dataset_type,
160
+ data_root=data_root,
161
+ ann_file='annotations/instances_val2017.json',
162
+ data_prefix=dict(img='val2017/'),
163
+ test_mode=True,
164
+ pipeline=test_pipeline,
165
+ backend_args=backend_args))
166
+ test_dataloader = val_dataloader
167
+
168
+ val_evaluator = dict(
169
+ type='CocoMetric',
170
+ ann_file=data_root + 'annotations/instances_val2017.json',
171
+ metric='bbox',
172
+ backend_args=backend_args)
173
+ test_evaluator = val_evaluator
174
+
175
+ # training settings
176
+ max_epochs = 300
177
+ num_last_epochs = 15
178
+ interval = 10
179
+
180
+ train_cfg = dict(max_epochs=max_epochs, val_interval=interval)
181
+
182
+ # optimizer
183
+ # default 8 gpu
184
+ base_lr = 0.01
185
+ optim_wrapper = dict(
186
+ type='OptimWrapper',
187
+ optimizer=dict(
188
+ type='SGD', lr=base_lr, momentum=0.9, weight_decay=5e-4,
189
+ nesterov=True),
190
+ paramwise_cfg=dict(norm_decay_mult=0., bias_decay_mult=0.))
191
+
192
+ # learning rate
193
+ param_scheduler = [
194
+ dict(
195
+ # use quadratic formula to warm up 5 epochs
196
+ # and lr is updated by iteration
197
+ # TODO: fix default scope in get function
198
+ type='mmdet.QuadraticWarmupLR',
199
+ by_epoch=True,
200
+ begin=0,
201
+ end=5,
202
+ convert_to_iter_based=True),
203
+ dict(
204
+ # use cosine lr from 5 to 285 epoch
205
+ type='CosineAnnealingLR',
206
+ eta_min=base_lr * 0.05,
207
+ begin=5,
208
+ T_max=max_epochs - num_last_epochs,
209
+ end=max_epochs - num_last_epochs,
210
+ by_epoch=True,
211
+ convert_to_iter_based=True),
212
+ dict(
213
+ # use fixed lr during last 15 epochs
214
+ type='ConstantLR',
215
+ by_epoch=True,
216
+ factor=1,
217
+ begin=max_epochs - num_last_epochs,
218
+ end=max_epochs,
219
+ )
220
+ ]
221
+
222
+ default_hooks = dict(
223
+ checkpoint=dict(
224
+ interval=interval,
225
+ max_keep_ckpts=3 # only keep latest 3 checkpoints
226
+ ))
227
+
228
+ custom_hooks = [
229
+ dict(
230
+ type='YOLOXModeSwitchHook',
231
+ num_last_epochs=num_last_epochs,
232
+ priority=48),
233
+ dict(type='SyncNormHook', priority=48),
234
+ dict(
235
+ type='EMAHook',
236
+ ema_type='ExpMomentumEMA',
237
+ momentum=0.0001,
238
+ update_buffers=True,
239
+ priority=49)
240
+ ]
241
+
242
+ # NOTE: `auto_scale_lr` is for automatically scaling LR,
243
+ # USER SHOULD NOT CHANGE ITS VALUES.
244
+ # base_batch_size = (8 GPUs) x (8 samples per GPU)
245
+ auto_scale_lr = dict(base_batch_size=64)
pose/script/dwpose.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Openpose
2
+ # Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
3
+ # 2nd Edited by https://github.com/Hzzone/pytorch-openpose
4
+ # 3rd Edited by ControlNet
5
+ # 4th Edited by ControlNet (added face and correct hands)
6
+
7
+ import os
8
+ os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
9
+
10
+ import cv2
11
+ import torch
12
+ import numpy as np
13
+ from PIL import Image
14
+
15
+
16
+ import pose.script.util as util
17
+
18
+ def resize_image(input_image, resolution):
19
+ H, W, C = input_image.shape
20
+ H = float(H)
21
+ W = float(W)
22
+ k = float(resolution) / min(H, W)
23
+ H *= k
24
+ W *= k
25
+ H = int(np.round(H / 64.0)) * 64
26
+ W = int(np.round(W / 64.0)) * 64
27
+ img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
28
+ return img
29
+
30
+ def HWC3(x):
31
+ assert x.dtype == np.uint8
32
+ if x.ndim == 2:
33
+ x = x[:, :, None]
34
+ assert x.ndim == 3
35
+ H, W, C = x.shape
36
+ assert C == 1 or C == 3 or C == 4
37
+ if C == 3:
38
+ return x
39
+ if C == 1:
40
+ return np.concatenate([x, x, x], axis=2)
41
+ if C == 4:
42
+ color = x[:, :, 0:3].astype(np.float32)
43
+ alpha = x[:, :, 3:4].astype(np.float32) / 255.0
44
+ y = color * alpha + 255.0 * (1.0 - alpha)
45
+ y = y.clip(0, 255).astype(np.uint8)
46
+ return y
47
+
48
+ def draw_pose(pose, H, W, draw_face):
49
+ bodies = pose['bodies']
50
+ faces = pose['faces']
51
+ hands = pose['hands']
52
+ candidate = bodies['candidate']
53
+ subset = bodies['subset']
54
+
55
+ # only the most significant person
56
+ faces = pose['faces'][:1]
57
+ hands = pose['hands'][:2]
58
+ candidate = bodies['candidate'][:18]
59
+ subset = bodies['subset'][:1]
60
+
61
+ # draw
62
+ canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
63
+ canvas = util.draw_bodypose(canvas, candidate, subset)
64
+ canvas = util.draw_handpose(canvas, hands)
65
+ if draw_face == True:
66
+ canvas = util.draw_facepose(canvas, faces)
67
+
68
+ return canvas
69
+
70
+ class DWposeDetector:
71
+ def __init__(self, det_config=None, det_ckpt=None, pose_config=None, pose_ckpt=None, device="cpu", keypoints_only=False):
72
+ from pose.script.wholebody import Wholebody
73
+
74
+ self.pose_estimation = Wholebody(det_config, det_ckpt, pose_config, pose_ckpt, device)
75
+ self.keypoints_only = keypoints_only
76
+ def to(self, device):
77
+ self.pose_estimation.to(device)
78
+ return self
79
+ '''
80
+ detect_resolution: 短边resize到多少 这是 draw pose 时的原始渲染分辨率。建议1024
81
+ image_resolution: 短边resize到多少 这是 save pose 时的文件分辨率。建议768
82
+
83
+ 实际检测分辨率:
84
+ yolox: (640, 640)
85
+ dwpose:(288, 384)
86
+ '''
87
+
88
+ def __call__(self, input_image, detect_resolution=1024, image_resolution=768, output_type="pil", **kwargs):
89
+
90
+ input_image = cv2.cvtColor(np.array(input_image, dtype=np.uint8), cv2.COLOR_RGB2BGR)
91
+ # cv2.imshow('', input_image)
92
+ # cv2.waitKey(0)
93
+
94
+ input_image = HWC3(input_image)
95
+ input_image = resize_image(input_image, detect_resolution)
96
+ H, W, C = input_image.shape
97
+
98
+ with torch.no_grad():
99
+ candidate, subset = self.pose_estimation(input_image)
100
+ nums, keys, locs = candidate.shape
101
+ candidate[..., 0] /= float(W)
102
+ candidate[..., 1] /= float(H)
103
+ body = candidate[:,:18].copy()
104
+ body = body.reshape(nums*18, locs)
105
+ score = subset[:,:18]
106
+
107
+ for i in range(len(score)):
108
+ for j in range(len(score[i])):
109
+ if score[i][j] > 0.3:
110
+ score[i][j] = int(18*i+j)
111
+ else:
112
+ score[i][j] = -1
113
+
114
+ un_visible = subset<0.3
115
+ candidate[un_visible] = -1
116
+
117
+ foot = candidate[:,18:24]
118
+
119
+ faces = candidate[:,24:92]
120
+
121
+ hands = candidate[:,92:113]
122
+ hands = np.vstack([hands, candidate[:,113:]])
123
+
124
+ bodies = dict(candidate=body, subset=score)
125
+ pose = dict(bodies=bodies, hands=hands, faces=faces)
126
+
127
+ if self.keypoints_only==True:
128
+ return pose
129
+ else:
130
+ detected_map = draw_pose(pose, H, W, draw_face=False)
131
+ detected_map = HWC3(detected_map)
132
+ img = resize_image(input_image, image_resolution)
133
+ H, W, C = img.shape
134
+ detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
135
+ # cv2.imshow('detected_map',detected_map)
136
+ # cv2.waitKey(0)
137
+
138
+ if output_type == "pil":
139
+ detected_map = cv2.cvtColor(detected_map, cv2.COLOR_BGR2RGB)
140
+ detected_map = Image.fromarray(detected_map)
141
+
142
+ return detected_map, pose
143
+
pose/script/tool.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib
2
+ import os
3
+ import os.path as osp
4
+ import shutil
5
+ import sys
6
+ from pathlib import Path
7
+
8
+ import av
9
+ import numpy as np
10
+ import torch
11
+ import torchvision
12
+ from einops import rearrange
13
+ from PIL import Image
14
+
15
+
16
+ def seed_everything(seed):
17
+ import random
18
+
19
+ import numpy as np
20
+
21
+ torch.manual_seed(seed)
22
+ torch.cuda.manual_seed_all(seed)
23
+ np.random.seed(seed % (2**32))
24
+ random.seed(seed)
25
+
26
+
27
+ def import_filename(filename):
28
+ spec = importlib.util.spec_from_file_location("mymodule", filename)
29
+ module = importlib.util.module_from_spec(spec)
30
+ sys.modules[spec.name] = module
31
+ spec.loader.exec_module(module)
32
+ return module
33
+
34
+
35
+ def delete_additional_ckpt(base_path, num_keep):
36
+ dirs = []
37
+ for d in os.listdir(base_path):
38
+ if d.startswith("checkpoint-"):
39
+ dirs.append(d)
40
+ num_tot = len(dirs)
41
+ if num_tot <= num_keep:
42
+ return
43
+ # ensure ckpt is sorted and delete the ealier!
44
+ del_dirs = sorted(dirs, key=lambda x: int(x.split("-")[-1]))[: num_tot - num_keep]
45
+ for d in del_dirs:
46
+ path_to_dir = osp.join(base_path, d)
47
+ if osp.exists(path_to_dir):
48
+ shutil.rmtree(path_to_dir)
49
+
50
+
51
+ def save_videos_from_pil(pil_images, path, fps):
52
+
53
+ save_fmt = Path(path).suffix
54
+ os.makedirs(os.path.dirname(path), exist_ok=True)
55
+ width, height = pil_images[0].size
56
+
57
+ if save_fmt == ".mp4":
58
+ codec = "libx264"
59
+ container = av.open(path, "w")
60
+ stream = container.add_stream(codec, rate=fps)
61
+
62
+ stream.width = width
63
+ stream.height = height
64
+ stream.pix_fmt = 'yuv420p'
65
+ stream.bit_rate = 10000000
66
+ stream.options["crf"] = "18"
67
+
68
+ for pil_image in pil_images:
69
+ # pil_image = Image.fromarray(image_arr).convert("RGB")
70
+ av_frame = av.VideoFrame.from_image(pil_image)
71
+ container.mux(stream.encode(av_frame))
72
+ container.mux(stream.encode())
73
+ container.close()
74
+
75
+ elif save_fmt == ".gif":
76
+ pil_images[0].save(
77
+ fp=path,
78
+ format="GIF",
79
+ append_images=pil_images[1:],
80
+ save_all=True,
81
+ duration=(1 / fps * 1000),
82
+ loop=0,
83
+ )
84
+ else:
85
+ raise ValueError("Unsupported file type. Use .mp4 or .gif.")
86
+
87
+
88
+ def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
89
+ videos = rearrange(videos, "b c t h w -> t b c h w")
90
+ height, width = videos.shape[-2:]
91
+ outputs = []
92
+
93
+ for x in videos:
94
+ x = torchvision.utils.make_grid(x, nrow=n_rows) # (c h w)
95
+ x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) # (h w c)
96
+ if rescale:
97
+ x = (x + 1.0) / 2.0 # -1,1 -> 0,1
98
+ x = (x * 255).numpy().astype(np.uint8)
99
+ x = Image.fromarray(x)
100
+
101
+ outputs.append(x)
102
+
103
+ os.makedirs(os.path.dirname(path), exist_ok=True)
104
+
105
+ save_videos_from_pil(outputs, path, fps)
106
+
107
+
108
+ def read_frames(video_path):
109
+ container = av.open(video_path)
110
+
111
+ video_stream = next(s for s in container.streams if s.type == "video")
112
+ frames = []
113
+ for packet in container.demux(video_stream):
114
+ for frame in packet.decode():
115
+ image = Image.frombytes(
116
+ "RGB",
117
+ (frame.width, frame.height),
118
+ frame.to_rgb().to_ndarray(),
119
+ )
120
+ frames.append(image)
121
+
122
+ return frames
123
+
124
+
125
+ def get_fps(video_path):
126
+ container = av.open(video_path)
127
+ video_stream = next(s for s in container.streams if s.type == "video")
128
+ fps = video_stream.average_rate
129
+ container.close()
130
+ return fps
pose/script/util.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import cv2
4
+
5
+
6
+ eps = 0.01
7
+
8
+ def smart_width(d):
9
+ if d<5:
10
+ return 1
11
+ elif d<10:
12
+ return 2
13
+ elif d<20:
14
+ return 3
15
+ elif d<40:
16
+ return 4
17
+ elif d<80:
18
+ return 5
19
+ elif d<160:
20
+ return 6
21
+ elif d<320:
22
+ return 7
23
+ else:
24
+ return 8
25
+
26
+
27
+
28
+ def draw_bodypose(canvas, candidate, subset):
29
+ H, W, C = canvas.shape
30
+ candidate = np.array(candidate)
31
+ subset = np.array(subset)
32
+
33
+ limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
34
+ [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
35
+ [1, 16], [16, 18], [3, 17], [6, 18]]
36
+
37
+ colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
38
+ [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
39
+ [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
40
+
41
+ for i in range(17):
42
+ for n in range(len(subset)):
43
+ index = subset[n][np.array(limbSeq[i]) - 1]
44
+ if -1 in index:
45
+ continue
46
+ Y = candidate[index.astype(int), 0] * float(W)
47
+ X = candidate[index.astype(int), 1] * float(H)
48
+ mX = np.mean(X)
49
+ mY = np.mean(Y)
50
+ length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
51
+ angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
52
+
53
+ width = smart_width(length)
54
+ polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), width), int(angle), 0, 360, 1)
55
+ cv2.fillConvexPoly(canvas, polygon, colors[i])
56
+
57
+ canvas = (canvas * 0.6).astype(np.uint8)
58
+
59
+ for i in range(18):
60
+ for n in range(len(subset)):
61
+ index = int(subset[n][i])
62
+ if index == -1:
63
+ continue
64
+ x, y = candidate[index][0:2]
65
+ x = int(x * W)
66
+ y = int(y * H)
67
+ radius = 4
68
+ cv2.circle(canvas, (int(x), int(y)), radius, colors[i], thickness=-1)
69
+
70
+ return canvas
71
+
72
+
73
+ def draw_handpose(canvas, all_hand_peaks):
74
+ import matplotlib
75
+
76
+ H, W, C = canvas.shape
77
+
78
+ edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
79
+ [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
80
+
81
+ # (person_number*2, 21, 2)
82
+ for i in range(len(all_hand_peaks)):
83
+ peaks = all_hand_peaks[i]
84
+ peaks = np.array(peaks)
85
+
86
+ for ie, e in enumerate(edges):
87
+
88
+ x1, y1 = peaks[e[0]]
89
+ x2, y2 = peaks[e[1]]
90
+
91
+ x1 = int(x1 * W)
92
+ y1 = int(y1 * H)
93
+ x2 = int(x2 * W)
94
+ y2 = int(y2 * H)
95
+ if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
96
+ length = ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
97
+ width = smart_width(length)
98
+ cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=width)
99
+
100
+ for _, keyponit in enumerate(peaks):
101
+ x, y = keyponit
102
+
103
+ x = int(x * W)
104
+ y = int(y * H)
105
+ if x > eps and y > eps:
106
+ radius = 3
107
+ cv2.circle(canvas, (x, y), radius, (0, 0, 255), thickness=-1)
108
+ return canvas
109
+
110
+
111
+ def draw_facepose(canvas, all_lmks):
112
+ H, W, C = canvas.shape
113
+ for lmks in all_lmks:
114
+ lmks = np.array(lmks)
115
+ for lmk in lmks:
116
+ x, y = lmk
117
+ x = int(x * W)
118
+ y = int(y * H)
119
+ if x > eps and y > eps:
120
+ radius = 3
121
+ cv2.circle(canvas, (x, y), radius, (255, 255, 255), thickness=-1)
122
+ return canvas
123
+
124
+
125
+
126
+
127
+ # Calculate the resolution
128
+ def size_calculate(h, w, resolution):
129
+
130
+ H = float(h)
131
+ W = float(w)
132
+
133
+ # resize the short edge to the resolution
134
+ k = float(resolution) / min(H, W) # short edge
135
+ H *= k
136
+ W *= k
137
+
138
+ # resize to the nearest integer multiple of 64
139
+ H = int(np.round(H / 64.0)) * 64
140
+ W = int(np.round(W / 64.0)) * 64
141
+ return H, W
142
+
143
+
144
+
145
+ def warpAffine_kps(kps, M):
146
+ a = M[:,:2]
147
+ t = M[:,2]
148
+ kps = np.dot(kps, a.T) + t
149
+ return kps
150
+
151
+
152
+
153
+
pose/script/wholebody.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) OpenMMLab. All rights reserved.
2
+ import os
3
+ import numpy as np
4
+ import warnings
5
+
6
+ try:
7
+ import mmcv
8
+ except ImportError:
9
+ warnings.warn(
10
+ "The module 'mmcv' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmcv>=2.0.1'"
11
+ )
12
+
13
+ try:
14
+ from mmpose.apis import inference_topdown
15
+ from mmpose.apis import init_model as init_pose_estimator
16
+ from mmpose.evaluation.functional import nms
17
+ from mmpose.utils import adapt_mmdet_pipeline
18
+ from mmpose.structures import merge_data_samples
19
+ except ImportError:
20
+ warnings.warn(
21
+ "The module 'mmpose' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmpose>=1.1.0'"
22
+ )
23
+
24
+ try:
25
+ from mmdet.apis import inference_detector, init_detector
26
+ except ImportError:
27
+ warnings.warn(
28
+ "The module 'mmdet' is not installed. The package will have limited functionality. Please install it using the command: mim install 'mmdet>=3.1.0'"
29
+ )
30
+
31
+
32
+ class Wholebody:
33
+ def __init__(self,
34
+ det_config=None, det_ckpt=None,
35
+ pose_config=None, pose_ckpt=None,
36
+ device="cpu"):
37
+
38
+ if det_config is None:
39
+ det_config = os.path.join(os.path.dirname(__file__), "yolox_config/yolox_l_8xb8-300e_coco.py")
40
+
41
+ if pose_config is None:
42
+ pose_config = os.path.join(os.path.dirname(__file__), "dwpose_config/dwpose-l_384x288.py")
43
+
44
+ if det_ckpt is None:
45
+ det_ckpt = 'https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth'
46
+
47
+ if pose_ckpt is None:
48
+ pose_ckpt = "https://huggingface.co/wanghaofan/dw-ll_ucoco_384/resolve/main/dw-ll_ucoco_384.pth"
49
+
50
+ # build detector
51
+ self.detector = init_detector(det_config, det_ckpt, device=device)
52
+ self.detector.cfg = adapt_mmdet_pipeline(self.detector.cfg)
53
+
54
+ # build pose estimator
55
+ self.pose_estimator = init_pose_estimator(
56
+ pose_config,
57
+ pose_ckpt,
58
+ device=device)
59
+
60
+ def to(self, device):
61
+ self.detector.to(device)
62
+ self.pose_estimator.to(device)
63
+ return self
64
+
65
+ def __call__(self, oriImg):
66
+ # predict bbox
67
+ det_result = inference_detector(self.detector, oriImg)
68
+ pred_instance = det_result.pred_instances.cpu().numpy()
69
+ bboxes = np.concatenate(
70
+ (pred_instance.bboxes, pred_instance.scores[:, None]), axis=1)
71
+ bboxes = bboxes[np.logical_and(pred_instance.labels == 0,
72
+ pred_instance.scores > 0.5)]
73
+
74
+ # set NMS threshold
75
+ bboxes = bboxes[nms(bboxes, 0.7), :4]
76
+
77
+ # predict keypoints
78
+ if len(bboxes) == 0:
79
+ pose_results = inference_topdown(self.pose_estimator, oriImg)
80
+ else:
81
+ pose_results = inference_topdown(self.pose_estimator, oriImg, bboxes)
82
+ preds = merge_data_samples(pose_results)
83
+ preds = preds.pred_instances
84
+
85
+ # preds = pose_results[0].pred_instances
86
+ keypoints = preds.get('transformed_keypoints',
87
+ preds.keypoints)
88
+ if 'keypoint_scores' in preds:
89
+ scores = preds.keypoint_scores
90
+ else:
91
+ scores = np.ones(keypoints.shape[:-1])
92
+
93
+ if 'keypoints_visible' in preds:
94
+ visible = preds.keypoints_visible
95
+ else:
96
+ visible = np.ones(keypoints.shape[:-1])
97
+ keypoints_info = np.concatenate(
98
+ (keypoints, scores[..., None], visible[..., None]),
99
+ axis=-1)
100
+ # compute neck joint
101
+ neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
102
+ # neck score when visualizing pred
103
+ neck[:, 2:4] = np.logical_and(
104
+ keypoints_info[:, 5, 2:4] > 0.3,
105
+ keypoints_info[:, 6, 2:4] > 0.3).astype(int)
106
+ new_keypoints_info = np.insert(
107
+ keypoints_info, 17, neck, axis=1)
108
+ mmpose_idx = [
109
+ 17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
110
+ ]
111
+ openpose_idx = [
112
+ 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
113
+ ]
114
+ new_keypoints_info[:, openpose_idx] = \
115
+ new_keypoints_info[:, mmpose_idx]
116
+ keypoints_info = new_keypoints_info
117
+
118
+ keypoints, scores, visible = keypoints_info[
119
+ ..., :2], keypoints_info[..., 2], keypoints_info[..., 3]
120
+
121
+ return keypoints, scores
pose_align.py ADDED
@@ -0,0 +1,557 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import argparse
3
+ import torch
4
+ import copy
5
+ import cv2
6
+ import os
7
+ import moviepy.video.io.ImageSequenceClip
8
+ from datetime import datetime
9
+ import gc
10
+ from huggingface_hub import hf_hub_download
11
+
12
+ from pose.script.dwpose import DWposeDetector, draw_pose
13
+ from pose.script.util import size_calculate, warpAffine_kps
14
+
15
+
16
+ '''
17
+ Detect dwpose from img, then align it by scale parameters
18
+ img: frame from the pose video
19
+ detector: DWpose
20
+ scales: scale parameters
21
+ '''
22
+ class PoseAlignmentInference:
23
+ def __init__(self):
24
+ self.detector = None
25
+ self.model_paths = {
26
+ "det_ckpt": os.path.join("pretrained_weights", "dwpose", "yolox_l_8x8_300e_coco.pth"),
27
+ "pose_ckpt": os.path.join("pretrained_weights", "dwpose", "dw-ll_ucoco_384.pth")
28
+ }
29
+ self.config_paths = {
30
+ "pose_config": os.path.join("pose", "config", "dwpose-l_384x288.py"),
31
+ "det_config": os.path.join("pose", "config", "yolox_l_8xb8-300e_coco.py"),
32
+ }
33
+ self.output_dir = os.path.join("assets", "video")
34
+ #self.download_models()
35
+
36
+ def align_pose(
37
+ self,
38
+ vidfn: str,
39
+ imgfn_refer: str,
40
+ detect_resolution: int,
41
+ image_resolution: int,
42
+ align_frame: int,
43
+ max_frame: int,
44
+ ):
45
+ dt_file_name = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
46
+ outfn=os.path.abspath(os.path.join(self.output_dir, f'{dt_file_name}_demo.mp4'))
47
+ outfn_align_pose_video=os.path.abspath(os.path.join(self.output_dir, f'{dt_file_name}.mp4'))
48
+
49
+ video = cv2.VideoCapture(vidfn)
50
+ width= video.get(cv2.CAP_PROP_FRAME_WIDTH)
51
+ height= video.get(cv2.CAP_PROP_FRAME_HEIGHT)
52
+
53
+ total_frame= video.get(cv2.CAP_PROP_FRAME_COUNT)
54
+ fps= video.get(cv2.CAP_PROP_FPS)
55
+
56
+ print("height:", height)
57
+ print("width:", width)
58
+ print("fps:", fps)
59
+
60
+ H_in, W_in = height, width
61
+ H_out, W_out = size_calculate(H_in,W_in, detect_resolution)
62
+ H_out, W_out = size_calculate(H_out,W_out, image_resolution)
63
+
64
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
65
+ self.detector = DWposeDetector(
66
+ det_config = self.config_paths["det_config"],
67
+ det_ckpt = self.model_paths["det_ckpt"],
68
+ pose_config = self.config_paths["pose_config"],
69
+ pose_ckpt = self.model_paths["pose_ckpt"],
70
+ keypoints_only=False
71
+ )
72
+ detector = self.detector.to(device)
73
+
74
+ refer_img = cv2.imread(imgfn_refer)
75
+ output_refer, pose_refer = detector(refer_img,detect_resolution=detect_resolution, image_resolution=image_resolution, output_type='cv2',return_pose_dict=True)
76
+ body_ref_img = pose_refer['bodies']['candidate']
77
+ hands_ref_img = pose_refer['hands']
78
+ faces_ref_img = pose_refer['faces']
79
+ output_refer = cv2.cvtColor(output_refer, cv2.COLOR_RGB2BGR)
80
+
81
+
82
+ skip_frames = align_frame
83
+ max_frame = max_frame
84
+ pose_list, video_frame_buffer, video_pose_buffer = [], [], []
85
+
86
+
87
+ cap = cv2.VideoCapture('2.mp4') # 读取视频
88
+ while cap.isOpened(): # 当视频被打开时:
89
+ ret, frame = cap.read() # 读取视频,读取到的某一帧存储到frame,若是读取成功,ret为True,反之为False
90
+ if ret: # 若是读取成功
91
+ cv2.imshow('frame', frame) # 显示读取到的这一帧画面
92
+ key = cv2.waitKey(25) # 等待一段时间,并且检测键盘输入
93
+ if key == ord('q'): # 若是键盘输入'q',则退出,释放视频
94
+ cap.release() # 释放视频
95
+ break
96
+ else:
97
+ cap.release()
98
+ cv2.destroyAllWindows() # 关闭所有窗口
99
+
100
+
101
+ for i in range(max_frame):
102
+ ret, img = video.read()
103
+ if img is None:
104
+ break
105
+ else:
106
+ if i < skip_frames:
107
+ continue
108
+ video_frame_buffer.append(img)
109
+
110
+ # estimate scale parameters by the 1st frame in the video
111
+ if i==skip_frames:
112
+ output_1st_img, pose_1st_img = detector(img, detect_resolution, image_resolution, output_type='cv2', return_pose_dict=True)
113
+ body_1st_img = pose_1st_img['bodies']['candidate']
114
+ hands_1st_img = pose_1st_img['hands']
115
+ faces_1st_img = pose_1st_img['faces']
116
+
117
+ '''
118
+ 计算逻辑:
119
+ 1. 先把 ref 和 pose 的高 resize 到一样,且都保持原来的长宽比。
120
+ 2. 用点在图中的实际坐标来计算。
121
+ 3. 实际计算中,把h的坐标归一化到 [0, 1], w为[0, W/H]
122
+ 4. 由于 dwpose 的输出本来就是归一化的坐标,所以h不需要变,w要乘W/H
123
+ 注意:dwpose 输���是 (w, h)
124
+ '''
125
+
126
+ # h不变,w缩放到原比例
127
+ ref_H, ref_W = refer_img.shape[0], refer_img.shape[1]
128
+ ref_ratio = ref_W / ref_H
129
+ body_ref_img[:, 0] = body_ref_img[:, 0] * ref_ratio
130
+ hands_ref_img[:, :, 0] = hands_ref_img[:, :, 0] * ref_ratio
131
+ faces_ref_img[:, :, 0] = faces_ref_img[:, :, 0] * ref_ratio
132
+
133
+ video_ratio = width / height
134
+ body_1st_img[:, 0] = body_1st_img[:, 0] * video_ratio
135
+ hands_1st_img[:, :, 0] = hands_1st_img[:, :, 0] * video_ratio
136
+ faces_1st_img[:, :, 0] = faces_1st_img[:, :, 0] * video_ratio
137
+
138
+ # scale
139
+ align_args = dict()
140
+
141
+ dist_1st_img = np.linalg.norm(body_1st_img[0]-body_1st_img[1]) # 0.078
142
+ dist_ref_img = np.linalg.norm(body_ref_img[0]-body_ref_img[1]) # 0.106
143
+ align_args["scale_neck"] = dist_ref_img / dist_1st_img # align / pose = ref / 1st
144
+
145
+ dist_1st_img = np.linalg.norm(body_1st_img[16]-body_1st_img[17])
146
+ dist_ref_img = np.linalg.norm(body_ref_img[16]-body_ref_img[17])
147
+ align_args["scale_face"] = dist_ref_img / dist_1st_img
148
+
149
+ dist_1st_img = np.linalg.norm(body_1st_img[2]-body_1st_img[5]) # 0.112
150
+ dist_ref_img = np.linalg.norm(body_ref_img[2]-body_ref_img[5]) # 0.174
151
+ align_args["scale_shoulder"] = dist_ref_img / dist_1st_img
152
+
153
+ dist_1st_img = np.linalg.norm(body_1st_img[2]-body_1st_img[3]) # 0.895
154
+ dist_ref_img = np.linalg.norm(body_ref_img[2]-body_ref_img[3]) # 0.134
155
+ s1 = dist_ref_img / dist_1st_img
156
+ dist_1st_img = np.linalg.norm(body_1st_img[5]-body_1st_img[6])
157
+ dist_ref_img = np.linalg.norm(body_ref_img[5]-body_ref_img[6])
158
+ s2 = dist_ref_img / dist_1st_img
159
+ align_args["scale_arm_upper"] = (s1+s2)/2 # 1.548
160
+
161
+ dist_1st_img = np.linalg.norm(body_1st_img[3]-body_1st_img[4])
162
+ dist_ref_img = np.linalg.norm(body_ref_img[3]-body_ref_img[4])
163
+ s1 = dist_ref_img / dist_1st_img
164
+ dist_1st_img = np.linalg.norm(body_1st_img[6]-body_1st_img[7])
165
+ dist_ref_img = np.linalg.norm(body_ref_img[6]-body_ref_img[7])
166
+ s2 = dist_ref_img / dist_1st_img
167
+ align_args["scale_arm_lower"] = (s1+s2)/2
168
+
169
+ # hand
170
+ dist_1st_img = np.zeros(10)
171
+ dist_ref_img = np.zeros(10)
172
+
173
+ dist_1st_img[0] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,1])
174
+ dist_1st_img[1] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,5])
175
+ dist_1st_img[2] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,9])
176
+ dist_1st_img[3] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,13])
177
+ dist_1st_img[4] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,17])
178
+ dist_1st_img[5] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,1])
179
+ dist_1st_img[6] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,5])
180
+ dist_1st_img[7] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,9])
181
+ dist_1st_img[8] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,13])
182
+ dist_1st_img[9] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,17])
183
+
184
+ dist_ref_img[0] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,1])
185
+ dist_ref_img[1] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,5])
186
+ dist_ref_img[2] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,9])
187
+ dist_ref_img[3] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,13])
188
+ dist_ref_img[4] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,17])
189
+ dist_ref_img[5] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,1])
190
+ dist_ref_img[6] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,5])
191
+ dist_ref_img[7] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,9])
192
+ dist_ref_img[8] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,13])
193
+ dist_ref_img[9] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,17])
194
+
195
+ ratio = 0
196
+ count = 0
197
+ for i in range (10):
198
+ if dist_1st_img[i] != 0:
199
+ ratio = ratio + dist_ref_img[i]/dist_1st_img[i]
200
+ count = count + 1
201
+ if count!=0:
202
+ align_args["scale_hand"] = (ratio/count+align_args["scale_arm_upper"]+align_args["scale_arm_lower"])/3
203
+ else:
204
+ align_args["scale_hand"] = (align_args["scale_arm_upper"]+align_args["scale_arm_lower"])/2
205
+
206
+ # body
207
+ dist_1st_img = np.linalg.norm(body_1st_img[1] - (body_1st_img[8] + body_1st_img[11])/2 )
208
+ dist_ref_img = np.linalg.norm(body_ref_img[1] - (body_ref_img[8] + body_ref_img[11])/2 )
209
+ align_args["scale_body_len"]=dist_ref_img / dist_1st_img
210
+
211
+ dist_1st_img = np.linalg.norm(body_1st_img[8]-body_1st_img[9])
212
+ dist_ref_img = np.linalg.norm(body_ref_img[8]-body_ref_img[9])
213
+ s1 = dist_ref_img / dist_1st_img
214
+ dist_1st_img = np.linalg.norm(body_1st_img[11]-body_1st_img[12])
215
+ dist_ref_img = np.linalg.norm(body_ref_img[11]-body_ref_img[12])
216
+ s2 = dist_ref_img / dist_1st_img
217
+ align_args["scale_leg_upper"] = (s1+s2)/2
218
+
219
+ dist_1st_img = np.linalg.norm(body_1st_img[9]-body_1st_img[10])
220
+ dist_ref_img = np.linalg.norm(body_ref_img[9]-body_ref_img[10])
221
+ s1 = dist_ref_img / dist_1st_img
222
+ dist_1st_img = np.linalg.norm(body_1st_img[12]-body_1st_img[13])
223
+ dist_ref_img = np.linalg.norm(body_ref_img[12]-body_ref_img[13])
224
+ s2 = dist_ref_img / dist_1st_img
225
+ align_args["scale_leg_lower"] = (s1+s2)/2
226
+
227
+ ####################
228
+ ####################
229
+ # need adjust nan
230
+ for k,v in align_args.items():
231
+ if np.isnan(v):
232
+ align_args[k]=1
233
+
234
+ # centre offset (the offset of key point 1)
235
+ offset = body_ref_img[1] - body_1st_img[1]
236
+
237
+
238
+ # pose align
239
+ pose_img, pose_ori = detector(img, detect_resolution, image_resolution, output_type='cv2', return_pose_dict=True)
240
+ video_pose_buffer.append(pose_img)
241
+ pose_align = self.align_img(img, pose_ori, align_args, detect_resolution, image_resolution)
242
+
243
+
244
+ # add centre offset
245
+ pose = pose_align
246
+ pose['bodies']['candidate'] = pose['bodies']['candidate'] + offset
247
+ pose['hands'] = pose['hands'] + offset
248
+ pose['faces'] = pose['faces'] + offset
249
+
250
+
251
+ # h不变,w从绝对坐标缩放回0-1 注意这里要回到ref的坐标系
252
+ pose['bodies']['candidate'][:, 0] = pose['bodies']['candidate'][:, 0] / ref_ratio
253
+ pose['hands'][:, :, 0] = pose['hands'][:, :, 0] / ref_ratio
254
+ pose['faces'][:, :, 0] = pose['faces'][:, :, 0] / ref_ratio
255
+ pose_list.append(pose)
256
+
257
+ # stack
258
+ body_list = [pose['bodies']['candidate'][:18] for pose in pose_list]
259
+ body_list_subset = [pose['bodies']['subset'][:1] for pose in pose_list]
260
+ hands_list = [pose['hands'][:2] for pose in pose_list]
261
+ faces_list = [pose['faces'][:1] for pose in pose_list]
262
+
263
+ body_seq = np.stack(body_list , axis=0)
264
+ body_seq_subset = np.stack(body_list_subset, axis=0)
265
+ hands_seq = np.stack(hands_list , axis=0)
266
+ faces_seq = np.stack(faces_list , axis=0)
267
+
268
+
269
+ # concatenate and paint results
270
+ H = 768 # paint height
271
+ W1 = int((H/ref_H * ref_W)//2 *2)
272
+ W2 = int((H/height * width)//2 *2)
273
+ result_demo = [] # = Writer(args, None, H, 3*W1+2*W2, outfn, fps)
274
+ result_pose_only = [] # Writer(args, None, H, W1, args.outfn_align_pose_video, fps)
275
+ for i in range(len(body_seq)):
276
+ pose_t={}
277
+ pose_t["bodies"]={}
278
+ pose_t["bodies"]["candidate"]=body_seq[i]
279
+ pose_t["bodies"]["subset"]=body_seq_subset[i]
280
+ pose_t["hands"]=hands_seq[i]
281
+ pose_t["faces"]=faces_seq[i]
282
+
283
+ ref_img = cv2.cvtColor(refer_img, cv2.COLOR_RGB2BGR)
284
+ ref_img = cv2.resize(ref_img, (W1, H))
285
+ ref_pose= cv2.resize(output_refer, (W1, H))
286
+
287
+ output_transformed = draw_pose(
288
+ pose_t,
289
+ int(H_in*1024/W_in),
290
+ 1024,
291
+ draw_face=False,
292
+ )
293
+ output_transformed = cv2.cvtColor(output_transformed, cv2.COLOR_BGR2RGB)
294
+ output_transformed = cv2.resize(output_transformed, (W1, H))
295
+
296
+ video_frame = cv2.resize(video_frame_buffer[i], (W2, H))
297
+ video_pose = cv2.resize(video_pose_buffer[i], (W2, H))
298
+
299
+ res = np.concatenate([ref_img, ref_pose, output_transformed, video_frame, video_pose], axis=1)
300
+ result_demo.append(res)
301
+ result_pose_only.append(output_transformed)
302
+
303
+ print(f"pose_list len: {len(pose_list)}")
304
+ clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(result_demo, fps=fps)
305
+ clip.write_videofile(outfn, fps=fps)
306
+ clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(result_pose_only, fps=fps)
307
+ clip.write_videofile(outfn_align_pose_video, fps=fps)
308
+ print('pose align done')
309
+ self.release_vram()
310
+ return outfn_align_pose_video, outfn
311
+
312
+ def download_models(self):
313
+ repo_id = 'jhj0517/MusePose'
314
+ for name, file_path in self.model_paths.items():
315
+ local_dir, filename = os.path.dirname(file_path), os.path.basename(file_path)
316
+ if not os.path.exists(local_dir):
317
+ os.makedirs(local_dir)
318
+
319
+ remote_filepath = os.path.join("dwpose", filename)
320
+ if not os.path.exists(file_path):
321
+ hf_hub_download(repo_id=repo_id, filename=remote_filepath,
322
+ local_dir=local_dir,
323
+ local_dir_use_symlinks=False)
324
+
325
+ def release_vram(self):
326
+ if self.detector is not None:
327
+ del self.detector
328
+ self.detector = None
329
+ if torch.cuda.is_available():
330
+ torch.cuda.empty_cache()
331
+ gc.collect()
332
+
333
+ @staticmethod
334
+ def align_img(img, pose_ori, scales, detect_resolution, image_resolution):
335
+
336
+ body_pose = copy.deepcopy(pose_ori['bodies']['candidate'])
337
+ hands = copy.deepcopy(pose_ori['hands'])
338
+ faces = copy.deepcopy(pose_ori['faces'])
339
+
340
+ '''
341
+ 计算逻辑:
342
+ 0. 该函数内进行绝对变换,始终保持人体中心点 body_pose[1] 不变
343
+ 1. 先把 ref 和 pose 的高 resize 到一样,且都保持原来的长宽比。
344
+ 2. 用点在图中的实际坐标来计算。
345
+ 3. 实际计算中,把h的坐标归一化到 [0, 1], w为[0, W/H]
346
+ 4. 由于 dwpose 的输出本来就是归一化的坐标,所以h不需要变,w要乘W/H
347
+ 注意:dwpose 输出是 (w, h)
348
+ '''
349
+
350
+ # h不变,w缩放到原比例
351
+ H_in, W_in, C_in = img.shape
352
+ video_ratio = W_in / H_in
353
+ body_pose[:, 0] = body_pose[:, 0] * video_ratio
354
+ hands[:, :, 0] = hands[:, :, 0] * video_ratio
355
+ faces[:, :, 0] = faces[:, :, 0] * video_ratio
356
+
357
+ # scales of 10 body parts
358
+ scale_neck = scales["scale_neck"]
359
+ scale_face = scales["scale_face"]
360
+ scale_shoulder = scales["scale_shoulder"]
361
+ scale_arm_upper = scales["scale_arm_upper"]
362
+ scale_arm_lower = scales["scale_arm_lower"]
363
+ scale_hand = scales["scale_hand"]
364
+ scale_body_len = scales["scale_body_len"]
365
+ scale_leg_upper = scales["scale_leg_upper"]
366
+ scale_leg_lower = scales["scale_leg_lower"]
367
+
368
+ scale_sum = 0
369
+ count = 0
370
+ scale_list = [scale_neck, scale_face, scale_shoulder, scale_arm_upper, scale_arm_lower, scale_hand,
371
+ scale_body_len, scale_leg_upper, scale_leg_lower]
372
+ for i in range(len(scale_list)):
373
+ if not np.isinf(scale_list[i]):
374
+ scale_sum = scale_sum + scale_list[i]
375
+ count = count + 1
376
+ for i in range(len(scale_list)):
377
+ if np.isinf(scale_list[i]):
378
+ scale_list[i] = scale_sum / count
379
+
380
+ # offsets of each part
381
+ offset = dict()
382
+ offset["14_15_16_17_to_0"] = body_pose[[14, 15, 16, 17], :] - body_pose[[0], :]
383
+ offset["3_to_2"] = body_pose[[3], :] - body_pose[[2], :]
384
+ offset["4_to_3"] = body_pose[[4], :] - body_pose[[3], :]
385
+ offset["6_to_5"] = body_pose[[6], :] - body_pose[[5], :]
386
+ offset["7_to_6"] = body_pose[[7], :] - body_pose[[6], :]
387
+ offset["9_to_8"] = body_pose[[9], :] - body_pose[[8], :]
388
+ offset["10_to_9"] = body_pose[[10], :] - body_pose[[9], :]
389
+ offset["12_to_11"] = body_pose[[12], :] - body_pose[[11], :]
390
+ offset["13_to_12"] = body_pose[[13], :] - body_pose[[12], :]
391
+ offset["hand_left_to_4"] = hands[1, :, :] - body_pose[[4], :]
392
+ offset["hand_right_to_7"] = hands[0, :, :] - body_pose[[7], :]
393
+
394
+ # neck
395
+ c_ = body_pose[1]
396
+ cx = c_[0]
397
+ cy = c_[1]
398
+ M = cv2.getRotationMatrix2D((cx, cy), 0, scale_neck)
399
+
400
+ neck = body_pose[[0], :]
401
+ neck = warpAffine_kps(neck, M)
402
+ body_pose[[0], :] = neck
403
+
404
+ # body_pose_up_shoulder
405
+ c_ = body_pose[0]
406
+ cx = c_[0]
407
+ cy = c_[1]
408
+ M = cv2.getRotationMatrix2D((cx, cy), 0, scale_face)
409
+
410
+ body_pose_up_shoulder = offset["14_15_16_17_to_0"] + body_pose[[0], :]
411
+ body_pose_up_shoulder = warpAffine_kps(body_pose_up_shoulder, M)
412
+ body_pose[[14, 15, 16, 17], :] = body_pose_up_shoulder
413
+
414
+ # shoulder
415
+ c_ = body_pose[1]
416
+ cx = c_[0]
417
+ cy = c_[1]
418
+ M = cv2.getRotationMatrix2D((cx, cy), 0, scale_shoulder)
419
+
420
+ body_pose_shoulder = body_pose[[2, 5], :]
421
+ body_pose_shoulder = warpAffine_kps(body_pose_shoulder, M)
422
+ body_pose[[2, 5], :] = body_pose_shoulder
423
+
424
+ # arm upper left
425
+ c_ = body_pose[2]
426
+ cx = c_[0]
427
+ cy = c_[1]
428
+ M = cv2.getRotationMatrix2D((cx, cy), 0, scale_arm_upper)
429
+
430
+ elbow = offset["3_to_2"] + body_pose[[2], :]
431
+ elbow = warpAffine_kps(elbow, M)
432
+ body_pose[[3], :] = elbow
433
+
434
+ # arm lower left
435
+ c_ = body_pose[3]
436
+ cx = c_[0]
437
+ cy = c_[1]
438
+ M = cv2.getRotationMatrix2D((cx, cy), 0, scale_arm_lower)
439
+
440
+ wrist = offset["4_to_3"] + body_pose[[3], :]
441
+ wrist = warpAffine_kps(wrist, M)
442
+ body_pose[[4], :] = wrist
443
+
444
+ # hand left
445
+ c_ = body_pose[4]
446
+ cx = c_[0]
447
+ cy = c_[1]
448
+ M = cv2.getRotationMatrix2D((cx, cy), 0, scale_hand)
449
+
450
+ hand = offset["hand_left_to_4"] + body_pose[[4], :]
451
+ hand = warpAffine_kps(hand, M)
452
+ hands[1, :, :] = hand
453
+
454
+ # arm upper right
455
+ c_ = body_pose[5]
456
+ cx = c_[0]
457
+ cy = c_[1]
458
+ M = cv2.getRotationMatrix2D((cx, cy), 0, scale_arm_upper)
459
+
460
+ elbow = offset["6_to_5"] + body_pose[[5], :]
461
+ elbow = warpAffine_kps(elbow, M)
462
+ body_pose[[6], :] = elbow
463
+
464
+ # arm lower right
465
+ c_ = body_pose[6]
466
+ cx = c_[0]
467
+ cy = c_[1]
468
+ M = cv2.getRotationMatrix2D((cx, cy), 0, scale_arm_lower)
469
+
470
+ wrist = offset["7_to_6"] + body_pose[[6], :]
471
+ wrist = warpAffine_kps(wrist, M)
472
+ body_pose[[7], :] = wrist
473
+
474
+ # hand right
475
+ c_ = body_pose[7]
476
+ cx = c_[0]
477
+ cy = c_[1]
478
+ M = cv2.getRotationMatrix2D((cx, cy), 0, scale_hand)
479
+
480
+ hand = offset["hand_right_to_7"] + body_pose[[7], :]
481
+ hand = warpAffine_kps(hand, M)
482
+ hands[0, :, :] = hand
483
+
484
+ # body len
485
+ c_ = body_pose[1]
486
+ cx = c_[0]
487
+ cy = c_[1]
488
+ M = cv2.getRotationMatrix2D((cx, cy), 0, scale_body_len)
489
+
490
+ body_len = body_pose[[8, 11], :]
491
+ body_len = warpAffine_kps(body_len, M)
492
+ body_pose[[8, 11], :] = body_len
493
+
494
+ # leg upper left
495
+ c_ = body_pose[8]
496
+ cx = c_[0]
497
+ cy = c_[1]
498
+ M = cv2.getRotationMatrix2D((cx, cy), 0, scale_leg_upper)
499
+
500
+ knee = offset["9_to_8"] + body_pose[[8], :]
501
+ knee = warpAffine_kps(knee, M)
502
+ body_pose[[9], :] = knee
503
+
504
+ # leg lower left
505
+ c_ = body_pose[9]
506
+ cx = c_[0]
507
+ cy = c_[1]
508
+ M = cv2.getRotationMatrix2D((cx, cy), 0, scale_leg_lower)
509
+
510
+ ankle = offset["10_to_9"] + body_pose[[9], :]
511
+ ankle = warpAffine_kps(ankle, M)
512
+ body_pose[[10], :] = ankle
513
+
514
+ # leg upper right
515
+ c_ = body_pose[11]
516
+ cx = c_[0]
517
+ cy = c_[1]
518
+ M = cv2.getRotationMatrix2D((cx, cy), 0, scale_leg_upper)
519
+
520
+ knee = offset["12_to_11"] + body_pose[[11], :]
521
+ knee = warpAffine_kps(knee, M)
522
+ body_pose[[12], :] = knee
523
+
524
+ # leg lower right
525
+ c_ = body_pose[12]
526
+ cx = c_[0]
527
+ cy = c_[1]
528
+ M = cv2.getRotationMatrix2D((cx, cy), 0, scale_leg_lower)
529
+
530
+ ankle = offset["13_to_12"] + body_pose[[12], :]
531
+ ankle = warpAffine_kps(ankle, M)
532
+ body_pose[[13], :] = ankle
533
+
534
+ # none part
535
+ body_pose_none = pose_ori['bodies']['candidate'] == -1.
536
+ hands_none = pose_ori['hands'] == -1.
537
+ faces_none = pose_ori['faces'] == -1.
538
+
539
+ body_pose[body_pose_none] = -1.
540
+ hands[hands_none] = -1.
541
+ nan = float('nan')
542
+ if len(hands[np.isnan(hands)]) > 0:
543
+ print('nan')
544
+ faces[faces_none] = -1.
545
+
546
+ # last check nan -> -1.
547
+ body_pose = np.nan_to_num(body_pose, nan=-1.)
548
+ hands = np.nan_to_num(hands, nan=-1.)
549
+ faces = np.nan_to_num(faces, nan=-1.)
550
+
551
+ # return
552
+ pose_align = copy.deepcopy(pose_ori)
553
+ pose_align['bodies']['candidate'] = body_pose
554
+ pose_align['hands'] = hands
555
+ pose_align['faces'] = faces
556
+
557
+ return pose_align
requirements.txt ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --index-url https://download.pytorch.org/whl/cu121
2
+ torch==2.1.2
3
+ torchvision==0.16.2
4
+ torchdiffeq==0.2.3
5
+ torchmetrics==1.2.1
6
+ torchsde==0.2.5
7
+ accelerate==0.29.3
8
+ av==11.0.0
9
+ clip @ https://github.com/openai/CLIP/archive/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1.zip#sha256=b5842c25da441d6c581b53a5c60e0c2127ebafe0f746f8e15561a006c6c3be6a
10
+ decord==0.6.0
11
+ diffusers>=0.24.0,<=0.27.2
12
+ einops==0.4.1
13
+ imageio==2.33.0
14
+ imageio-ffmpeg==0.4.9
15
+ ffmpeg-python==0.2.0
16
+ omegaconf==2.2.3
17
+ open-clip-torch==2.20.0
18
+ opencv-contrib-python==4.8.1.78
19
+ opencv-python==4.8.1.78
20
+ scikit-image==0.21.0
21
+ scikit-learn==1.3.2
22
+ transformers==4.33.1
23
+ xformers==0.0.22
24
+ moviepy==1.0.3
25
+ wget==3.2
test_stage.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from omegaconf import OmegaConf
3
+ import torch
4
+ from pprint import pprint
5
+
6
+ from musepose_inference import MusePoseInference
7
+
8
+
9
+ def parse_args():
10
+ parser = argparse.ArgumentParser()
11
+ parser.add_argument("--config", type=str, default="./configs/test_stage.yaml")
12
+ parser.add_argument("-W", type=int, default=768, help="Width")
13
+ parser.add_argument("-H", type=int, default=768, help="Height")
14
+ parser.add_argument("-L", type=int, default=300, help="video frame length")
15
+ parser.add_argument("-S", type=int, default=48, help="video slice frame number")
16
+ parser.add_argument("-O", type=int, default=4, help="video slice overlap frame number")
17
+
18
+ parser.add_argument("--cfg", type=float, default=3.5, help="Classifier free guidance")
19
+ parser.add_argument("--seed", type=int, default=99)
20
+ parser.add_argument("--steps", type=int, default=20, help="DDIM sampling steps")
21
+ parser.add_argument("--fps", type=int)
22
+ parser.add_argument("--weight_dtype", type=str, default="fp16")
23
+ parser.add_argument("--output_dir", type=str, default="./output")
24
+
25
+ parser.add_argument("--skip", type=int, default=1, help="frame sample rate = (skip+1)")
26
+ args = parser.parse_args()
27
+
28
+ return args
29
+
30
+
31
+ def main():
32
+ args = parse_args()
33
+ config = OmegaConf.load(args.config)
34
+
35
+ musepose_infer = MusePoseInference(config=config, output_dir=args.output_dir)
36
+
37
+ ref_image_path = list(config["test_cases"].keys())[0]
38
+ pose_video_path = config["test_cases"][ref_image_path][0]
39
+
40
+ output_file_path = musepose_infer.infer_musepose(
41
+ ref_image_path=ref_image_path,
42
+ pose_video_path=pose_video_path,
43
+ weight_dtype=args.weight_dtype,
44
+ W=args.W,
45
+ H=args.H,
46
+ L=args.L,
47
+ S=args.S,
48
+ O=args.O,
49
+ cfg=args.cfg,
50
+ seed=args.seed,
51
+ steps=args.steps,
52
+ fps=args.fps,
53
+ skip=args.skip
54
+ )
55
+
56
+ print(f"{output_file_path} is saved")
57
+
58
+
59
+ if __name__ == "__main__":
60
+ main()