# Whisper-WebUI A Gradio-based browser interface for [Whisper](https://github.com/openai/whisper). You can use it as an Easy Subtitle Generator! ![Whisper WebUI](https://github.com/jhj0517/Whsiper-WebUI/blob/master/screenshot.png) ## Notebook If you wish to try this on Colab, you can do it in [here](https://colab.research.google.com/github/jhj0517/Whisper-WebUI/blob/master/notebook/whisper-webui.ipynb)! # Feature - Select the Whisper implementation you want to use between : - [openai/whisper](https://github.com/openai/whisper) - [SYSTRAN/faster-whisper](https://github.com/SYSTRAN/faster-whisper) (used by default) - [Vaibhavs10/insanely-fast-whisper](https://github.com/Vaibhavs10/insanely-fast-whisper) - Generate subtitles from various sources, including : - Files - Youtube - Microphone - Currently supported subtitle formats : - SRT - WebVTT - txt ( only text file without timeline ) - Speech to Text Translation - From other languages to English. ( This is Whisper's end-to-end speech-to-text translation feature ) - Text to Text Translation - Translate subtitle files using Facebook NLLB models - Translate subtitle files using DeepL API - Pre-processing audio input with [Silero VAD](https://github.com/snakers4/silero-vad). - Post-processing with speaker diarization using the [pyannote](https://huggingface.co/pyannote/speaker-diarization-3.1) model. - To download the pyannote model, you need to have a Huggingface token and manually accept their terms in the pages below. 1. https://huggingface.co/pyannote/speaker-diarization-3.1 2. https://huggingface.co/pyannote/segmentation-3.0 # Installation and Running ### Prerequisite To run this WebUI, you need to have `git`, `python` version 3.8 ~ 3.10, `FFmpeg` and `CUDA` (if you use NVIDIA GPU) version above 12.0 Please follow the links below to install the necessary software: - git : [https://git-scm.com/downloads](https://git-scm.com/downloads) - python : [https://www.python.org/downloads/](https://www.python.org/downloads/) **( If your python version is too new, torch will not install properly.)** - FFmpeg : [https://ffmpeg.org/download.html](https://ffmpeg.org/download.html) - CUDA : [https://developer.nvidia.com/cuda-downloads](https://developer.nvidia.com/cuda-downloads) After installing FFmpeg, **make sure to add the `FFmpeg/bin` folder to your system PATH!** ### Automatic Installation 1. Download `Whisper-WebUI.zip` with the file corresponding to your OS from [v1.0.0](https://github.com/jhj0517/Whisper-WebUI/releases/tag/v1.0.0) and extract its contents. 2. Run `install.bat` or `install.sh` to install dependencies. (This will create a `venv` directory and install dependencies there.) 3. Start WebUI with `start-webui.bat` or `start-webui.sh` 4. To update the WebUI, run `update.bat` or `update.sh` And you can also run the project with command line arguments if you like to, see [wiki](https://github.com/jhj0517/Whisper-WebUI/wiki/Command-Line-Arguments) for a guide to arguments. - ## Running with Docker 1. Build the image ```sh docker build -t whisper-webui:latest . ``` 2. Run the container with commands - For bash : ```sh docker run --gpus all -d \ -v /path/to/models:/Whisper-WebUI/models \ -v /path/to/outputs:/Whisper-WebUI/outputs \ -p 7860:7860 \ -it \ whisper-webui:latest --server_name 0.0.0.0 --server_port 7860 ``` - For PowerShell: ```shell docker run --gpus all -d ` -v /path/to/models:/Whisper-WebUI/models ` -v /path/to/outputs:/Whisper-WebUI/outputs ` -p 7860:7860 ` -it ` whisper-webui:latest --server_name 0.0.0.0 --server_port 7860 ``` # VRAM Usages This project is integrated with [faster-whisper](https://github.com/guillaumekln/faster-whisper) by default for better VRAM usage and transcription speed. According to faster-whisper, the efficiency of the optimized whisper model is as follows: | Implementation | Precision | Beam size | Time | Max. GPU memory | Max. CPU memory | |-------------------|-----------|-----------|-------|-----------------|-----------------| | openai/whisper | fp16 | 5 | 4m30s | 11325MB | 9439MB | | faster-whisper | fp16 | 5 | 54s | 4755MB | 3244MB | If you want to use an implementation other than faster-whisper, use `--whisper_type` arg and the repository name.
Read [wiki](https://github.com/jhj0517/Whisper-WebUI/wiki/Command-Line-Arguments) for more info about CLI args. ## Available models This is Whisper's original VRAM usage table for models. | Size | Parameters | English-only model | Multilingual model | Required VRAM | Relative speed | |:------:|:----------:|:------------------:|:------------------:|:-------------:|:--------------:| | tiny | 39 M | `tiny.en` | `tiny` | ~1 GB | ~32x | | base | 74 M | `base.en` | `base` | ~1 GB | ~16x | | small | 244 M | `small.en` | `small` | ~2 GB | ~6x | | medium | 769 M | `medium.en` | `medium` | ~5 GB | ~2x | | large | 1550 M | N/A | `large` | ~10 GB | 1x | `.en` models are for English only, and the cool thing is that you can use the `Translate to English` option from the "large" models! ## TODOđź—“ - [x] Add DeepL API translation - [x] Add NLLB Model translation - [x] Integrate with faster-whisper - [x] Integrate with insanely-fast-whisper - [x] Integrate with whisperX ( Only speaker diarization part ) - [ ] Add fast api script - [ ] Support real-time transcription for microphone