Spaces:
Running
Running
Merge pull request #15 from damho1104/mitigate-cuda-out-of-memory
Browse files- modules/base_interface.py +20 -0
- modules/nllb_inference.py +60 -53
- modules/whisper_Inference.py +12 -11
modules/base_interface.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
|
6 |
+
class BaseInterface:
|
7 |
+
def __init__(self):
|
8 |
+
pass
|
9 |
+
|
10 |
+
@staticmethod
|
11 |
+
def release_cuda_memory():
|
12 |
+
torch.cuda.empty_cache()
|
13 |
+
torch.cuda.reset_max_memory_allocated()
|
14 |
+
|
15 |
+
@staticmethod
|
16 |
+
def remove_input_files(file_paths: List[str]):
|
17 |
+
for file_path in file_paths:
|
18 |
+
if not os.path.exists(file_path):
|
19 |
+
continue
|
20 |
+
os.remove(file_path)
|
modules/nllb_inference.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
2 |
import gradio as gr
|
3 |
import torch
|
@@ -10,8 +11,9 @@ DEFAULT_MODEL_SIZE = "facebook/nllb-200-1.3B"
|
|
10 |
NLLB_MODELS = ["facebook/nllb-200-3.3B", "facebook/nllb-200-1.3B", "facebook/nllb-200-distilled-600M"]
|
11 |
|
12 |
|
13 |
-
class NLLBInference:
|
14 |
def __init__(self):
|
|
|
15 |
self.default_model_size = DEFAULT_MODEL_SIZE
|
16 |
self.current_model_size = None
|
17 |
self.model = None
|
@@ -29,69 +31,74 @@ class NLLBInference:
|
|
29 |
def translate_file(self, fileobjs
|
30 |
, model_size, src_lang, tgt_lang,
|
31 |
progress=gr.Progress()):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
progress(0, desc="Initializing NLLB Model..")
|
36 |
-
self.current_model_size = model_size
|
37 |
-
self.model = AutoModelForSeq2SeqLM.from_pretrained(pretrained_model_name_or_path=model_size,
|
38 |
-
cache_dir="models/NLLB")
|
39 |
-
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=model_size,
|
40 |
-
cache_dir=f"models/NLLB/tokenizers")
|
41 |
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
|
56 |
-
if file_ext == ".srt":
|
57 |
-
parsed_dicts = parse_srt(file_path=file_path)
|
58 |
-
total_progress = len(parsed_dicts)
|
59 |
-
for index, dic in enumerate(parsed_dicts):
|
60 |
-
progress(index / total_progress, desc="Translating..")
|
61 |
-
translated_text = self.translate_text(dic["sentence"])
|
62 |
-
dic["sentence"] = translated_text
|
63 |
-
subtitle = get_serialized_srt(parsed_dicts)
|
64 |
|
65 |
-
|
66 |
-
file_name = file_name[:-9]
|
67 |
-
output_path = f"outputs/translations/{file_name}-{timestamp}"
|
68 |
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
for index, dic in enumerate(parsed_dicts):
|
75 |
-
progress(index / total_progress, desc="Translating..")
|
76 |
-
translated_text = self.translate_text(dic["sentence"])
|
77 |
-
dic["sentence"] = translated_text
|
78 |
-
subtitle = get_serialized_vtt(parsed_dicts)
|
79 |
|
80 |
-
|
81 |
-
file_name = file_name[:-9]
|
82 |
-
output_path = f"outputs/translations/{file_name}-{timestamp}"
|
83 |
|
84 |
-
|
85 |
|
86 |
-
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
return f"Done! Subtitle is in the outputs/translation folder.\n\n{total_result}"
|
95 |
|
96 |
|
97 |
NLLB_AVAILABLE_LANGS = {
|
|
|
1 |
+
from .base_interface import BaseInterface
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
3 |
import gradio as gr
|
4 |
import torch
|
|
|
11 |
NLLB_MODELS = ["facebook/nllb-200-3.3B", "facebook/nllb-200-1.3B", "facebook/nllb-200-distilled-600M"]
|
12 |
|
13 |
|
14 |
+
class NLLBInference(BaseInterface):
|
15 |
def __init__(self):
|
16 |
+
super().__init__()
|
17 |
self.default_model_size = DEFAULT_MODEL_SIZE
|
18 |
self.current_model_size = None
|
19 |
self.model = None
|
|
|
31 |
def translate_file(self, fileobjs
|
32 |
, model_size, src_lang, tgt_lang,
|
33 |
progress=gr.Progress()):
|
34 |
+
try:
|
35 |
+
if model_size != self.current_model_size or self.model is None:
|
36 |
+
print("\nInitializing NLLB Model..\n")
|
37 |
+
progress(0, desc="Initializing NLLB Model..")
|
38 |
+
self.current_model_size = model_size
|
39 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(pretrained_model_name_or_path=model_size,
|
40 |
+
cache_dir="models/NLLB")
|
41 |
+
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=model_size,
|
42 |
+
cache_dir=f"models/NLLB/tokenizers")
|
43 |
|
44 |
+
src_lang = NLLB_AVAILABLE_LANGS[src_lang]
|
45 |
+
tgt_lang = NLLB_AVAILABLE_LANGS[tgt_lang]
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
self.pipeline = pipeline("translation",
|
48 |
+
model=self.model,
|
49 |
+
tokenizer=self.tokenizer,
|
50 |
+
src_lang=src_lang,
|
51 |
+
tgt_lang=tgt_lang,
|
52 |
+
device=self.device)
|
53 |
|
54 |
+
files_info = {}
|
55 |
+
for fileobj in fileobjs:
|
56 |
+
file_path = fileobj.name
|
57 |
+
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
|
58 |
+
if file_ext == ".srt":
|
59 |
+
parsed_dicts = parse_srt(file_path=file_path)
|
60 |
+
total_progress = len(parsed_dicts)
|
61 |
+
for index, dic in enumerate(parsed_dicts):
|
62 |
+
progress(index / total_progress, desc="Translating..")
|
63 |
+
translated_text = self.translate_text(dic["sentence"])
|
64 |
+
dic["sentence"] = translated_text
|
65 |
+
subtitle = get_serialized_srt(parsed_dicts)
|
66 |
|
67 |
+
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
68 |
+
file_name = file_name[:-9]
|
69 |
+
output_path = f"outputs/translations/{file_name}-{timestamp}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
write_file(subtitle, f"{output_path}.srt")
|
|
|
|
|
72 |
|
73 |
+
elif file_ext == ".vtt":
|
74 |
+
parsed_dicts = parse_vtt(file_path=file_path)
|
75 |
+
total_progress = len(parsed_dicts)
|
76 |
+
for index, dic in enumerate(parsed_dicts):
|
77 |
+
progress(index / total_progress, desc="Translating..")
|
78 |
+
translated_text = self.translate_text(dic["sentence"])
|
79 |
+
dic["sentence"] = translated_text
|
80 |
+
subtitle = get_serialized_vtt(parsed_dicts)
|
81 |
|
82 |
+
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
83 |
+
file_name = file_name[:-9]
|
84 |
+
output_path = f"outputs/translations/{file_name}-{timestamp}"
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
write_file(subtitle, f"{output_path}.vtt")
|
|
|
|
|
87 |
|
88 |
+
files_info[file_name] = subtitle
|
89 |
|
90 |
+
total_result = ''
|
91 |
+
for file_name, subtitle in files_info.items():
|
92 |
+
total_result += '------------------------------------\n'
|
93 |
+
total_result += f'{file_name}\n\n'
|
94 |
+
total_result += f'{subtitle}'
|
95 |
|
96 |
+
return f"Done! Subtitle is in the outputs/translation folder.\n\n{total_result}"
|
97 |
+
except Exception as e:
|
98 |
+
return f"Error: {str(e)}"
|
99 |
+
finally:
|
100 |
+
self.release_cuda_memory()
|
101 |
+
self.remove_input_files([fileobj.name for fileobj in fileobjs])
|
|
|
102 |
|
103 |
|
104 |
NLLB_AVAILABLE_LANGS = {
|
modules/whisper_Inference.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import whisper
|
|
|
2 |
from modules.subtitle_manager import get_srt, get_vtt, write_file, safe_filename
|
3 |
from modules.youtube_manager import get_ytdata, get_ytaudio
|
4 |
import gradio as gr
|
@@ -8,8 +9,9 @@ from datetime import datetime
|
|
8 |
DEFAULT_MODEL_SIZE = "large-v2"
|
9 |
|
10 |
|
11 |
-
class WhisperInference:
|
12 |
def __init__(self):
|
|
|
13 |
self.current_model_size = None
|
14 |
self.model = None
|
15 |
self.available_models = whisper.available_models()
|
@@ -71,11 +73,10 @@ class WhisperInference:
|
|
71 |
|
72 |
return f"Done! Subtitle is in the outputs folder.\n\n{total_result}"
|
73 |
except Exception as e:
|
74 |
-
return str(e)
|
75 |
finally:
|
76 |
-
|
77 |
-
|
78 |
-
os.remove(fileobj.name)
|
79 |
|
80 |
def transcribe_youtube(self, youtubelink,
|
81 |
model_size, lang, subformat, istranslate,
|
@@ -120,12 +121,12 @@ class WhisperInference:
|
|
120 |
|
121 |
return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
122 |
except Exception as e:
|
123 |
-
return str(e)
|
124 |
finally:
|
125 |
yt = get_ytdata(youtubelink)
|
126 |
file_path = get_ytaudio(yt)
|
127 |
-
|
128 |
-
|
129 |
|
130 |
def transcribe_mic(self, micaudio,
|
131 |
model_size, lang, subformat, istranslate,
|
@@ -167,7 +168,7 @@ class WhisperInference:
|
|
167 |
|
168 |
return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
169 |
except Exception as e:
|
170 |
-
|
171 |
finally:
|
172 |
-
|
173 |
-
|
|
|
1 |
import whisper
|
2 |
+
from .base_interface import BaseInterface
|
3 |
from modules.subtitle_manager import get_srt, get_vtt, write_file, safe_filename
|
4 |
from modules.youtube_manager import get_ytdata, get_ytaudio
|
5 |
import gradio as gr
|
|
|
9 |
DEFAULT_MODEL_SIZE = "large-v2"
|
10 |
|
11 |
|
12 |
+
class WhisperInference(BaseInterface):
|
13 |
def __init__(self):
|
14 |
+
super().__init__()
|
15 |
self.current_model_size = None
|
16 |
self.model = None
|
17 |
self.available_models = whisper.available_models()
|
|
|
73 |
|
74 |
return f"Done! Subtitle is in the outputs folder.\n\n{total_result}"
|
75 |
except Exception as e:
|
76 |
+
return f"Error: {str(e)}"
|
77 |
finally:
|
78 |
+
self.release_cuda_memory()
|
79 |
+
self.remove_input_files([fileobj.name for fileobj in fileobjs])
|
|
|
80 |
|
81 |
def transcribe_youtube(self, youtubelink,
|
82 |
model_size, lang, subformat, istranslate,
|
|
|
121 |
|
122 |
return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
123 |
except Exception as e:
|
124 |
+
return f"Error: {str(e)}"
|
125 |
finally:
|
126 |
yt = get_ytdata(youtubelink)
|
127 |
file_path = get_ytaudio(yt)
|
128 |
+
self.release_cuda_memory()
|
129 |
+
self.remove_input_files([file_path])
|
130 |
|
131 |
def transcribe_mic(self, micaudio,
|
132 |
model_size, lang, subformat, istranslate,
|
|
|
168 |
|
169 |
return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
170 |
except Exception as e:
|
171 |
+
return f"Error: {str(e)}"
|
172 |
finally:
|
173 |
+
self.release_cuda_memory()
|
174 |
+
self.remove_input_files([micaudio])
|