Spaces:
Running
Running
jhj0517
commited on
Commit
•
5f3fe7d
1
Parent(s):
7e8138f
implement txt file format in `whisper_inference.py`
Browse files- modules/whisper_Inference.py +33 -28
modules/whisper_Inference.py
CHANGED
@@ -8,7 +8,7 @@ from datetime import datetime
|
|
8 |
import torch
|
9 |
|
10 |
from .base_interface import BaseInterface
|
11 |
-
from modules.subtitle_manager import get_srt, get_vtt, write_file, safe_filename
|
12 |
from modules.youtube_manager import get_ytdata, get_ytaudio
|
13 |
|
14 |
DEFAULT_MODEL_SIZE = "large-v2"
|
@@ -30,7 +30,7 @@ class WhisperInference(BaseInterface):
|
|
30 |
fileobjs: list,
|
31 |
model_size: str,
|
32 |
lang: str,
|
33 |
-
|
34 |
istranslate: bool,
|
35 |
add_timestamp: bool,
|
36 |
beam_size: int,
|
@@ -49,8 +49,8 @@ class WhisperInference(BaseInterface):
|
|
49 |
Whisper model size from gr.Dropdown()
|
50 |
lang: str
|
51 |
Source language of the file to transcribe from gr.Dropdown()
|
52 |
-
|
53 |
-
|
54 |
istranslate: bool
|
55 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
56 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
@@ -93,11 +93,11 @@ class WhisperInference(BaseInterface):
|
|
93 |
|
94 |
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
|
95 |
file_name = safe_filename(file_name)
|
96 |
-
subtitle = self.
|
97 |
file_name=file_name,
|
98 |
transcribed_segments=result,
|
99 |
add_timestamp=add_timestamp,
|
100 |
-
|
101 |
)
|
102 |
|
103 |
files_info[file_name] = {"subtitle": subtitle, "elapsed_time": elapsed_time}
|
@@ -122,7 +122,7 @@ class WhisperInference(BaseInterface):
|
|
122 |
youtubelink: str,
|
123 |
model_size: str,
|
124 |
lang: str,
|
125 |
-
|
126 |
istranslate: bool,
|
127 |
add_timestamp: bool,
|
128 |
beam_size: int,
|
@@ -141,8 +141,8 @@ class WhisperInference(BaseInterface):
|
|
141 |
Whisper model size from gr.Dropdown()
|
142 |
lang: str
|
143 |
Source language of the file to transcribe from gr.Dropdown()
|
144 |
-
|
145 |
-
|
146 |
istranslate: bool
|
147 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
148 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
@@ -181,11 +181,11 @@ class WhisperInference(BaseInterface):
|
|
181 |
progress(1, desc="Completed!")
|
182 |
|
183 |
file_name = safe_filename(yt.title)
|
184 |
-
subtitle = self.
|
185 |
file_name=file_name,
|
186 |
transcribed_segments=result,
|
187 |
add_timestamp=add_timestamp,
|
188 |
-
|
189 |
)
|
190 |
|
191 |
return f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
@@ -209,7 +209,7 @@ class WhisperInference(BaseInterface):
|
|
209 |
micaudio: str,
|
210 |
model_size: str,
|
211 |
lang: str,
|
212 |
-
|
213 |
istranslate: bool,
|
214 |
beam_size: int,
|
215 |
log_prob_threshold: float,
|
@@ -227,8 +227,8 @@ class WhisperInference(BaseInterface):
|
|
227 |
Whisper model size from gr.Dropdown()
|
228 |
lang: str
|
229 |
Source language of the file to transcribe from gr.Dropdown()
|
230 |
-
|
231 |
-
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
|
232 |
istranslate: bool
|
233 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
234 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
@@ -261,11 +261,11 @@ class WhisperInference(BaseInterface):
|
|
261 |
progress=progress)
|
262 |
progress(1, desc="Completed!")
|
263 |
|
264 |
-
subtitle = self.
|
265 |
file_name="Mic",
|
266 |
transcribed_segments=result,
|
267 |
add_timestamp=True,
|
268 |
-
|
269 |
)
|
270 |
|
271 |
return f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
@@ -361,11 +361,11 @@ class WhisperInference(BaseInterface):
|
|
361 |
)
|
362 |
|
363 |
@staticmethod
|
364 |
-
def
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
"""
|
370 |
This method writes subtitle file and returns str to gr.Textbox
|
371 |
"""
|
@@ -375,13 +375,18 @@ class WhisperInference(BaseInterface):
|
|
375 |
else:
|
376 |
output_path = os.path.join("outputs", f"{file_name}")
|
377 |
|
378 |
-
if
|
379 |
-
|
380 |
-
write_file(
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
|
|
|
|
|
|
|
|
|
|
385 |
|
386 |
@staticmethod
|
387 |
def format_time(elapsed_time: float) -> str:
|
|
|
8 |
import torch
|
9 |
|
10 |
from .base_interface import BaseInterface
|
11 |
+
from modules.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
|
12 |
from modules.youtube_manager import get_ytdata, get_ytaudio
|
13 |
|
14 |
DEFAULT_MODEL_SIZE = "large-v2"
|
|
|
30 |
fileobjs: list,
|
31 |
model_size: str,
|
32 |
lang: str,
|
33 |
+
file_format: str,
|
34 |
istranslate: bool,
|
35 |
add_timestamp: bool,
|
36 |
beam_size: int,
|
|
|
49 |
Whisper model size from gr.Dropdown()
|
50 |
lang: str
|
51 |
Source language of the file to transcribe from gr.Dropdown()
|
52 |
+
file_format: str
|
53 |
+
File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
54 |
istranslate: bool
|
55 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
56 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
|
93 |
|
94 |
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
|
95 |
file_name = safe_filename(file_name)
|
96 |
+
subtitle = self.generate_and_write_file(
|
97 |
file_name=file_name,
|
98 |
transcribed_segments=result,
|
99 |
add_timestamp=add_timestamp,
|
100 |
+
file_format=file_format
|
101 |
)
|
102 |
|
103 |
files_info[file_name] = {"subtitle": subtitle, "elapsed_time": elapsed_time}
|
|
|
122 |
youtubelink: str,
|
123 |
model_size: str,
|
124 |
lang: str,
|
125 |
+
file_format: str,
|
126 |
istranslate: bool,
|
127 |
add_timestamp: bool,
|
128 |
beam_size: int,
|
|
|
141 |
Whisper model size from gr.Dropdown()
|
142 |
lang: str
|
143 |
Source language of the file to transcribe from gr.Dropdown()
|
144 |
+
file_format: str
|
145 |
+
File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
146 |
istranslate: bool
|
147 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
148 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
|
181 |
progress(1, desc="Completed!")
|
182 |
|
183 |
file_name = safe_filename(yt.title)
|
184 |
+
subtitle = self.generate_and_write_file(
|
185 |
file_name=file_name,
|
186 |
transcribed_segments=result,
|
187 |
add_timestamp=add_timestamp,
|
188 |
+
file_format=file_format
|
189 |
)
|
190 |
|
191 |
return f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
|
|
209 |
micaudio: str,
|
210 |
model_size: str,
|
211 |
lang: str,
|
212 |
+
file_format: str,
|
213 |
istranslate: bool,
|
214 |
beam_size: int,
|
215 |
log_prob_threshold: float,
|
|
|
227 |
Whisper model size from gr.Dropdown()
|
228 |
lang: str
|
229 |
Source language of the file to transcribe from gr.Dropdown()
|
230 |
+
file_format: str
|
231 |
+
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
232 |
istranslate: bool
|
233 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
234 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
|
261 |
progress=progress)
|
262 |
progress(1, desc="Completed!")
|
263 |
|
264 |
+
subtitle = self.generate_and_write_file(
|
265 |
file_name="Mic",
|
266 |
transcribed_segments=result,
|
267 |
add_timestamp=True,
|
268 |
+
file_format=file_format
|
269 |
)
|
270 |
|
271 |
return f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
|
|
361 |
)
|
362 |
|
363 |
@staticmethod
|
364 |
+
def generate_and_write_file(file_name: str,
|
365 |
+
transcribed_segments: list,
|
366 |
+
add_timestamp: bool,
|
367 |
+
file_format: str,
|
368 |
+
) -> str:
|
369 |
"""
|
370 |
This method writes subtitle file and returns str to gr.Textbox
|
371 |
"""
|
|
|
375 |
else:
|
376 |
output_path = os.path.join("outputs", f"{file_name}")
|
377 |
|
378 |
+
if file_format == "SRT":
|
379 |
+
content = get_srt(transcribed_segments)
|
380 |
+
write_file(content, f"{output_path}.srt")
|
381 |
+
|
382 |
+
elif file_format == "WebVTT":
|
383 |
+
content = get_vtt(transcribed_segments)
|
384 |
+
write_file(content, f"{output_path}.vtt")
|
385 |
+
|
386 |
+
elif file_format == "txt":
|
387 |
+
content = get_txt(transcribed_segments)
|
388 |
+
write_file(content, f"{output_path}.vtt")
|
389 |
+
return content
|
390 |
|
391 |
@staticmethod
|
392 |
def format_time(elapsed_time: float) -> str:
|