Spaces:
Running
Running
Merge pull request #37 from jhj0517/implement_faster-whisper
Browse files- app.py +7 -1
- modules/faster_whisper_inference.py +353 -0
- requirements.txt +1 -0
- user-start-webui.bat +6 -1
app.py
CHANGED
@@ -3,6 +3,7 @@ import os
|
|
3 |
import argparse
|
4 |
|
5 |
from modules.whisper_Inference import WhisperInference
|
|
|
6 |
from modules.nllb_inference import NLLBInference
|
7 |
from ui.htmls import *
|
8 |
from modules.youtube_manager import get_ytmetas
|
@@ -12,7 +13,11 @@ class App:
|
|
12 |
def __init__(self, args):
|
13 |
self.args = args
|
14 |
self.app = gr.Blocks(css=CSS, theme=self.args.theme)
|
15 |
-
self.whisper_inf = WhisperInference()
|
|
|
|
|
|
|
|
|
16 |
self.nllb_inf = NLLBInference()
|
17 |
|
18 |
@staticmethod
|
@@ -164,6 +169,7 @@ class App:
|
|
164 |
|
165 |
# Create the parser for command-line arguments
|
166 |
parser = argparse.ArgumentParser()
|
|
|
167 |
parser.add_argument('--share', type=bool, default=False, nargs='?', const=True, help='Gradio share value')
|
168 |
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
|
169 |
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
|
|
|
3 |
import argparse
|
4 |
|
5 |
from modules.whisper_Inference import WhisperInference
|
6 |
+
from modules.faster_whisper_inference import FasterWhisperInference
|
7 |
from modules.nllb_inference import NLLBInference
|
8 |
from ui.htmls import *
|
9 |
from modules.youtube_manager import get_ytmetas
|
|
|
13 |
def __init__(self, args):
|
14 |
self.args = args
|
15 |
self.app = gr.Blocks(css=CSS, theme=self.args.theme)
|
16 |
+
self.whisper_inf = WhisperInference() if self.args.disable_faster_whisper else FasterWhisperInference()
|
17 |
+
if isinstance(self.whisper_inf, FasterWhisperInference):
|
18 |
+
print("Use Faster Whisper implementation")
|
19 |
+
else:
|
20 |
+
print("Use Open AI Whisper implementation")
|
21 |
self.nllb_inf = NLLBInference()
|
22 |
|
23 |
@staticmethod
|
|
|
169 |
|
170 |
# Create the parser for command-line arguments
|
171 |
parser = argparse.ArgumentParser()
|
172 |
+
parser.add_argument('--disable_faster_whisper', type=bool, default=False, nargs='?', const=True, help='Disable the faster_whisper implementation. faster_whipser is implemented by https://github.com/guillaumekln/faster-whisper')
|
173 |
parser.add_argument('--share', type=bool, default=False, nargs='?', const=True, help='Gradio share value')
|
174 |
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
|
175 |
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
|
modules/faster_whisper_inference.py
ADDED
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import tqdm
|
4 |
+
import time
|
5 |
+
import numpy as np
|
6 |
+
from typing import BinaryIO, Union, Tuple
|
7 |
+
from datetime import datetime, timedelta
|
8 |
+
|
9 |
+
import faster_whisper
|
10 |
+
import whisper
|
11 |
+
import torch
|
12 |
+
import gradio as gr
|
13 |
+
|
14 |
+
from .base_interface import BaseInterface
|
15 |
+
from modules.subtitle_manager import get_srt, get_vtt, write_file, safe_filename
|
16 |
+
from modules.youtube_manager import get_ytdata, get_ytaudio
|
17 |
+
|
18 |
+
|
19 |
+
class FasterWhisperInference(BaseInterface):
|
20 |
+
def __init__(self):
|
21 |
+
super().__init__()
|
22 |
+
self.current_model_size = None
|
23 |
+
self.model = None
|
24 |
+
self.available_models = whisper.available_models()
|
25 |
+
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
26 |
+
self.translatable_models = ["large", "large-v1", "large-v2"]
|
27 |
+
self.default_beam_size = 5
|
28 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
+
|
30 |
+
def transcribe_file(self,
|
31 |
+
fileobjs: list,
|
32 |
+
model_size: str,
|
33 |
+
lang: str,
|
34 |
+
subformat: str,
|
35 |
+
istranslate: bool,
|
36 |
+
add_timestamp: bool,
|
37 |
+
progress=gr.Progress()
|
38 |
+
) -> str:
|
39 |
+
"""
|
40 |
+
Write subtitle file from Files
|
41 |
+
|
42 |
+
Parameters
|
43 |
+
----------
|
44 |
+
fileobjs: list
|
45 |
+
List of files to transcribe from gr.Files()
|
46 |
+
model_size: str
|
47 |
+
Whisper model size from gr.Dropdown()
|
48 |
+
lang: str
|
49 |
+
Source language of the file to transcribe from gr.Dropdown()
|
50 |
+
subformat: str
|
51 |
+
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
|
52 |
+
istranslate: bool
|
53 |
+
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
54 |
+
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
55 |
+
add_timestamp: bool
|
56 |
+
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
57 |
+
progress: gr.Progress
|
58 |
+
Indicator to show progress directly in gradio.
|
59 |
+
|
60 |
+
Returns
|
61 |
+
----------
|
62 |
+
String to return to gr.Textbox()
|
63 |
+
"""
|
64 |
+
try:
|
65 |
+
if model_size != self.current_model_size or self.model is None:
|
66 |
+
self.initialize_model(model_size=model_size, progress=progress)
|
67 |
+
|
68 |
+
if lang == "Automatic Detection":
|
69 |
+
lang = None
|
70 |
+
|
71 |
+
files_info = {}
|
72 |
+
for fileobj in fileobjs:
|
73 |
+
transcribed_segments, time_for_task = self.transcribe(
|
74 |
+
audio=fileobj.name,
|
75 |
+
lang=lang,
|
76 |
+
istranslate=istranslate,
|
77 |
+
progress=progress
|
78 |
+
)
|
79 |
+
|
80 |
+
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
|
81 |
+
file_name = safe_filename(file_name)
|
82 |
+
subtitle = self.generate_and_write_subtitle(
|
83 |
+
file_name=file_name,
|
84 |
+
transcribed_segments=transcribed_segments,
|
85 |
+
add_timestamp=add_timestamp,
|
86 |
+
subformat=subformat
|
87 |
+
)
|
88 |
+
files_info[file_name] = {"subtitle": subtitle, "time_for_task": time_for_task}
|
89 |
+
|
90 |
+
total_result = ''
|
91 |
+
total_time = 0
|
92 |
+
for file_name, info in files_info.items():
|
93 |
+
total_result += '------------------------------------\n'
|
94 |
+
total_result += f'{file_name}\n\n'
|
95 |
+
total_result += f'{info["subtitle"]}'
|
96 |
+
total_time += info["time_for_task"]
|
97 |
+
|
98 |
+
return f"Done in {self.format_time(total_time)}! Subtitle is in the outputs folder.\n\n{total_result}"
|
99 |
+
|
100 |
+
except Exception as e:
|
101 |
+
print(f"Error transcribing file on line {e}")
|
102 |
+
finally:
|
103 |
+
self.release_cuda_memory()
|
104 |
+
self.remove_input_files([fileobj.name for fileobj in fileobjs])
|
105 |
+
|
106 |
+
def transcribe_youtube(self,
|
107 |
+
youtubelink: str,
|
108 |
+
model_size: str,
|
109 |
+
lang: str,
|
110 |
+
subformat: str,
|
111 |
+
istranslate: bool,
|
112 |
+
add_timestamp: bool,
|
113 |
+
progress=gr.Progress()
|
114 |
+
) -> str:
|
115 |
+
"""
|
116 |
+
Write subtitle file from Youtube
|
117 |
+
|
118 |
+
Parameters
|
119 |
+
----------
|
120 |
+
youtubelink: str
|
121 |
+
Link of Youtube to transcribe from gr.Textbox()
|
122 |
+
model_size: str
|
123 |
+
Whisper model size from gr.Dropdown()
|
124 |
+
lang: str
|
125 |
+
Source language of the file to transcribe from gr.Dropdown()
|
126 |
+
subformat: str
|
127 |
+
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
|
128 |
+
istranslate: bool
|
129 |
+
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
130 |
+
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
131 |
+
add_timestamp: bool
|
132 |
+
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
133 |
+
progress: gr.Progress
|
134 |
+
Indicator to show progress directly in gradio.
|
135 |
+
|
136 |
+
Returns
|
137 |
+
----------
|
138 |
+
String to return to gr.Textbox()
|
139 |
+
"""
|
140 |
+
try:
|
141 |
+
if model_size != self.current_model_size or self.model is None:
|
142 |
+
self.initialize_model(model_size=model_size, progress=progress)
|
143 |
+
|
144 |
+
if lang == "Automatic Detection":
|
145 |
+
lang = None
|
146 |
+
|
147 |
+
progress(0, desc="Loading Audio from Youtube..")
|
148 |
+
yt = get_ytdata(youtubelink)
|
149 |
+
audio = get_ytaudio(yt)
|
150 |
+
|
151 |
+
transcribed_segments, time_for_task = self.transcribe(
|
152 |
+
audio=audio,
|
153 |
+
lang=lang,
|
154 |
+
istranslate=istranslate,
|
155 |
+
progress=progress
|
156 |
+
)
|
157 |
+
|
158 |
+
progress(1, desc="Completed!")
|
159 |
+
|
160 |
+
file_name = safe_filename(yt.title)
|
161 |
+
subtitle = self.generate_and_write_subtitle(
|
162 |
+
file_name=file_name,
|
163 |
+
transcribed_segments=transcribed_segments,
|
164 |
+
add_timestamp=add_timestamp,
|
165 |
+
subformat=subformat
|
166 |
+
)
|
167 |
+
return f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
168 |
+
except Exception as e:
|
169 |
+
return f"Error: {str(e)}"
|
170 |
+
finally:
|
171 |
+
yt = get_ytdata(youtubelink)
|
172 |
+
file_path = get_ytaudio(yt)
|
173 |
+
self.release_cuda_memory()
|
174 |
+
self.remove_input_files([file_path])
|
175 |
+
|
176 |
+
def transcribe_mic(self,
|
177 |
+
micaudio: str,
|
178 |
+
model_size: str,
|
179 |
+
lang: str,
|
180 |
+
subformat: str,
|
181 |
+
istranslate: bool,
|
182 |
+
progress=gr.Progress()
|
183 |
+
) -> str:
|
184 |
+
"""
|
185 |
+
Write subtitle file from microphone
|
186 |
+
|
187 |
+
Parameters
|
188 |
+
----------
|
189 |
+
micaudio: str
|
190 |
+
Audio file path from gr.Microphone()
|
191 |
+
model_size: str
|
192 |
+
Whisper model size from gr.Dropdown()
|
193 |
+
lang: str
|
194 |
+
Source language of the file to transcribe from gr.Dropdown()
|
195 |
+
subformat: str
|
196 |
+
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
|
197 |
+
istranslate: bool
|
198 |
+
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
199 |
+
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
200 |
+
progress: gr.Progress
|
201 |
+
Indicator to show progress directly in gradio.
|
202 |
+
|
203 |
+
Returns
|
204 |
+
----------
|
205 |
+
String to return to gr.Textbox()
|
206 |
+
"""
|
207 |
+
try:
|
208 |
+
if model_size != self.current_model_size or self.model is None:
|
209 |
+
self.initialize_model(model_size=model_size, progress=progress)
|
210 |
+
|
211 |
+
if lang == "Automatic Detection":
|
212 |
+
lang = None
|
213 |
+
|
214 |
+
progress(0, desc="Loading Audio..")
|
215 |
+
|
216 |
+
transcribed_segments, time_for_task = self.transcribe(
|
217 |
+
audio=micaudio,
|
218 |
+
lang=lang,
|
219 |
+
istranslate=istranslate,
|
220 |
+
progress=progress
|
221 |
+
)
|
222 |
+
progress(1, desc="Completed!")
|
223 |
+
|
224 |
+
subtitle = self.generate_and_write_subtitle(
|
225 |
+
file_name="Mic",
|
226 |
+
transcribed_segments=transcribed_segments,
|
227 |
+
add_timestamp=True,
|
228 |
+
subformat=subformat
|
229 |
+
)
|
230 |
+
return f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
231 |
+
except Exception as e:
|
232 |
+
return f"Error: {str(e)}"
|
233 |
+
finally:
|
234 |
+
self.release_cuda_memory()
|
235 |
+
self.remove_input_files([micaudio])
|
236 |
+
|
237 |
+
def transcribe(self,
|
238 |
+
audio: Union[str, BinaryIO, np.ndarray],
|
239 |
+
lang: str,
|
240 |
+
istranslate: bool,
|
241 |
+
progress: gr.Progress
|
242 |
+
) -> Tuple[list, float]:
|
243 |
+
"""
|
244 |
+
transcribe method for faster-whisper.
|
245 |
+
|
246 |
+
Parameters
|
247 |
+
----------
|
248 |
+
audio: Union[str, BinaryIO, np.ndarray]
|
249 |
+
Audio path or file binary or Audio numpy array
|
250 |
+
lang: str
|
251 |
+
Source language of the file to transcribe from gr.Dropdown()
|
252 |
+
istranslate: bool
|
253 |
+
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
254 |
+
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
255 |
+
progress: gr.Progress
|
256 |
+
Indicator to show progress directly in gradio.
|
257 |
+
|
258 |
+
Returns
|
259 |
+
----------
|
260 |
+
segments_result: list[dict]
|
261 |
+
list of dicts that includes start, end timestamps and transcribed text
|
262 |
+
elapsed_time: float
|
263 |
+
elapsed time for transcription
|
264 |
+
"""
|
265 |
+
start_time = time.time()
|
266 |
+
segments, info = self.model.transcribe(
|
267 |
+
audio=audio,
|
268 |
+
language=lang,
|
269 |
+
beam_size=self.default_beam_size,
|
270 |
+
task="translate" if istranslate and self.current_model_size in self.translatable_models else "transcribe"
|
271 |
+
)
|
272 |
+
progress(0, desc="Loading audio..")
|
273 |
+
total_frames = self.get_total_frames(audio=audio, progress=progress)
|
274 |
+
|
275 |
+
segments_result = []
|
276 |
+
for segment in segments:
|
277 |
+
progress(segment.seek / total_frames, desc="Transcribing..")
|
278 |
+
segments_result.append({
|
279 |
+
"start": segment.start,
|
280 |
+
"end": segment.end,
|
281 |
+
"text": segment.text
|
282 |
+
})
|
283 |
+
|
284 |
+
elapsed_time = time.time() - start_time
|
285 |
+
return segments_result, elapsed_time
|
286 |
+
|
287 |
+
def initialize_model(self,
|
288 |
+
model_size: str,
|
289 |
+
progress: gr.Progress
|
290 |
+
):
|
291 |
+
"""
|
292 |
+
Initialize model if it doesn't match with current model size
|
293 |
+
"""
|
294 |
+
progress(0, desc="Initializing Model..")
|
295 |
+
self.current_model_size = model_size
|
296 |
+
self.model = faster_whisper.WhisperModel(
|
297 |
+
device=self.device,
|
298 |
+
model_size_or_path=model_size,
|
299 |
+
download_root=os.path.join("models", "Whisper", "faster-whisper"),
|
300 |
+
compute_type="float16"
|
301 |
+
)
|
302 |
+
|
303 |
+
def get_total_frames(self,
|
304 |
+
audio: Union[str, BinaryIO],
|
305 |
+
progress: gr.Progress
|
306 |
+
) -> float:
|
307 |
+
"""
|
308 |
+
This method is only for tracking the progress.
|
309 |
+
Returns total frames to track progress.
|
310 |
+
"""
|
311 |
+
progress(0, desc="Loading audio..")
|
312 |
+
decoded_audio = faster_whisper.decode_audio(audio)
|
313 |
+
features = self.model.feature_extractor(decoded_audio)
|
314 |
+
content_frames = features.shape[-1] - self.model.feature_extractor.nb_max_frames
|
315 |
+
return content_frames
|
316 |
+
|
317 |
+
@staticmethod
|
318 |
+
def generate_and_write_subtitle(file_name: str,
|
319 |
+
transcribed_segments: list,
|
320 |
+
add_timestamp: bool,
|
321 |
+
subformat: str,
|
322 |
+
) -> str:
|
323 |
+
"""
|
324 |
+
This method writes subtitle file and returns str to gr.Textbox
|
325 |
+
"""
|
326 |
+
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
327 |
+
if add_timestamp:
|
328 |
+
output_path = os.path.join("outputs", f"{file_name}-{timestamp}")
|
329 |
+
else:
|
330 |
+
output_path = os.path.join("outputs", f"{file_name}")
|
331 |
+
|
332 |
+
if subformat == "SRT":
|
333 |
+
subtitle = get_srt(transcribed_segments)
|
334 |
+
write_file(subtitle, f"{output_path}.srt")
|
335 |
+
elif subformat == "WebVTT":
|
336 |
+
subtitle = get_vtt(transcribed_segments)
|
337 |
+
write_file(subtitle, f"{output_path}.vtt")
|
338 |
+
return subtitle
|
339 |
+
|
340 |
+
@staticmethod
|
341 |
+
def format_time(elapsed_time: float) -> str:
|
342 |
+
hours, rem = divmod(elapsed_time, 3600)
|
343 |
+
minutes, seconds = divmod(rem, 60)
|
344 |
+
|
345 |
+
time_str = ""
|
346 |
+
if hours:
|
347 |
+
time_str += f"{hours} hours "
|
348 |
+
if minutes:
|
349 |
+
time_str += f"{minutes} minutes "
|
350 |
+
seconds = round(seconds)
|
351 |
+
time_str += f"{seconds} seconds"
|
352 |
+
|
353 |
+
return time_str.strip()
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
--extra-index-url https://download.pytorch.org/whl/cu117
|
2 |
torch
|
3 |
git+https://github.com/jhj0517/jhj0517-whisper.git
|
|
|
4 |
gradio==3.37.0
|
5 |
pytube
|
|
|
1 |
--extra-index-url https://download.pytorch.org/whl/cu117
|
2 |
torch
|
3 |
git+https://github.com/jhj0517/jhj0517-whisper.git
|
4 |
+
faster-whisper
|
5 |
gradio==3.37.0
|
6 |
pytube
|
user-start-webui.bat
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
:: This batch file is for launching with command line args
|
|
|
2 |
@echo off
|
3 |
|
4 |
:: Set values
|
@@ -8,6 +9,7 @@ set USERNAME=
|
|
8 |
set PASSWORD=
|
9 |
set SHARE=
|
10 |
set THEME=
|
|
|
11 |
|
12 |
:: Set args accordingly
|
13 |
if not "%SERVER_NAME%"=="" (
|
@@ -28,7 +30,10 @@ if /I "%SHARE%"=="true" (
|
|
28 |
if not "%THEME%"=="" (
|
29 |
set THEME_ARG=--theme %THEME%
|
30 |
)
|
|
|
|
|
|
|
31 |
|
32 |
:: Call the original .bat script with optional arguments
|
33 |
-
start-webui.bat %SERVER_NAME_ARG% %SERVER_PORT_ARG% %USERNAME_ARG% %PASSWORD_ARG% %SHARE_ARG% %THEME_ARG%
|
34 |
pause
|
|
|
1 |
:: This batch file is for launching with command line args
|
2 |
+
:: See the wiki for a guide to command line arguments: https://github.com/jhj0517/Whisper-WebUI/wiki/Command-Line-Arguments
|
3 |
@echo off
|
4 |
|
5 |
:: Set values
|
|
|
9 |
set PASSWORD=
|
10 |
set SHARE=
|
11 |
set THEME=
|
12 |
+
set DISABLE_FASTER_WHISPER=
|
13 |
|
14 |
:: Set args accordingly
|
15 |
if not "%SERVER_NAME%"=="" (
|
|
|
30 |
if not "%THEME%"=="" (
|
31 |
set THEME_ARG=--theme %THEME%
|
32 |
)
|
33 |
+
if /I "%DISABLE_FASTER_WHISPER%"=="true" (
|
34 |
+
set DISABLE_FASTER_WHISPER_ARG=--disable_faster_whisper
|
35 |
+
)
|
36 |
|
37 |
:: Call the original .bat script with optional arguments
|
38 |
+
start-webui.bat %SERVER_NAME_ARG% %SERVER_PORT_ARG% %USERNAME_ARG% %PASSWORD_ARG% %SHARE_ARG% %THEME_ARG% %DISABLE_FASTER_WHISPER_ARG%
|
39 |
pause
|