Spaces:
Running
Running
jhj0517
commited on
Commit
•
08d7176
1
Parent(s):
ada247c
add audio loader
Browse files- modules/diarize/audio_loader.py +161 -0
modules/diarize/audio_loader.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
from functools import lru_cache
|
4 |
+
from typing import Optional, Union
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
def exact_div(x, y):
|
11 |
+
assert x % y == 0
|
12 |
+
return x // y
|
13 |
+
|
14 |
+
# hard-coded audio hyperparameters
|
15 |
+
SAMPLE_RATE = 16000
|
16 |
+
N_FFT = 400
|
17 |
+
HOP_LENGTH = 160
|
18 |
+
CHUNK_LENGTH = 30
|
19 |
+
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk
|
20 |
+
N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000 frames in a mel spectrogram input
|
21 |
+
|
22 |
+
N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2
|
23 |
+
FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) # 10ms per audio frame
|
24 |
+
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) # 20ms per audio token
|
25 |
+
|
26 |
+
|
27 |
+
def load_audio(file: str, sr: int = SAMPLE_RATE):
|
28 |
+
"""
|
29 |
+
Open an audio file and read as mono waveform, resampling as necessary
|
30 |
+
|
31 |
+
Parameters
|
32 |
+
----------
|
33 |
+
file: str
|
34 |
+
The audio file to open
|
35 |
+
|
36 |
+
sr: int
|
37 |
+
The sample rate to resample the audio if necessary
|
38 |
+
|
39 |
+
Returns
|
40 |
+
-------
|
41 |
+
A NumPy array containing the audio waveform, in float32 dtype.
|
42 |
+
"""
|
43 |
+
try:
|
44 |
+
# Launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
45 |
+
# Requires the ffmpeg CLI to be installed.
|
46 |
+
cmd = [
|
47 |
+
"ffmpeg",
|
48 |
+
"-nostdin",
|
49 |
+
"-threads",
|
50 |
+
"0",
|
51 |
+
"-i",
|
52 |
+
file,
|
53 |
+
"-f",
|
54 |
+
"s16le",
|
55 |
+
"-ac",
|
56 |
+
"1",
|
57 |
+
"-acodec",
|
58 |
+
"pcm_s16le",
|
59 |
+
"-ar",
|
60 |
+
str(sr),
|
61 |
+
"-",
|
62 |
+
]
|
63 |
+
out = subprocess.run(cmd, capture_output=True, check=True).stdout
|
64 |
+
except subprocess.CalledProcessError as e:
|
65 |
+
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
66 |
+
|
67 |
+
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|
68 |
+
|
69 |
+
|
70 |
+
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
71 |
+
"""
|
72 |
+
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
|
73 |
+
"""
|
74 |
+
if torch.is_tensor(array):
|
75 |
+
if array.shape[axis] > length:
|
76 |
+
array = array.index_select(
|
77 |
+
dim=axis, index=torch.arange(length, device=array.device)
|
78 |
+
)
|
79 |
+
|
80 |
+
if array.shape[axis] < length:
|
81 |
+
pad_widths = [(0, 0)] * array.ndim
|
82 |
+
pad_widths[axis] = (0, length - array.shape[axis])
|
83 |
+
array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes])
|
84 |
+
else:
|
85 |
+
if array.shape[axis] > length:
|
86 |
+
array = array.take(indices=range(length), axis=axis)
|
87 |
+
|
88 |
+
if array.shape[axis] < length:
|
89 |
+
pad_widths = [(0, 0)] * array.ndim
|
90 |
+
pad_widths[axis] = (0, length - array.shape[axis])
|
91 |
+
array = np.pad(array, pad_widths)
|
92 |
+
|
93 |
+
return array
|
94 |
+
|
95 |
+
|
96 |
+
@lru_cache(maxsize=None)
|
97 |
+
def mel_filters(device, n_mels: int) -> torch.Tensor:
|
98 |
+
"""
|
99 |
+
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
|
100 |
+
Allows decoupling librosa dependency; saved using:
|
101 |
+
|
102 |
+
np.savez_compressed(
|
103 |
+
"mel_filters.npz",
|
104 |
+
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
|
105 |
+
)
|
106 |
+
"""
|
107 |
+
assert n_mels in [80, 128], f"Unsupported n_mels: {n_mels}"
|
108 |
+
with np.load(
|
109 |
+
os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")
|
110 |
+
) as f:
|
111 |
+
return torch.from_numpy(f[f"mel_{n_mels}"]).to(device)
|
112 |
+
|
113 |
+
|
114 |
+
def log_mel_spectrogram(
|
115 |
+
audio: Union[str, np.ndarray, torch.Tensor],
|
116 |
+
n_mels: int,
|
117 |
+
padding: int = 0,
|
118 |
+
device: Optional[Union[str, torch.device]] = None,
|
119 |
+
):
|
120 |
+
"""
|
121 |
+
Compute the log-Mel spectrogram of
|
122 |
+
|
123 |
+
Parameters
|
124 |
+
----------
|
125 |
+
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
|
126 |
+
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
|
127 |
+
|
128 |
+
n_mels: int
|
129 |
+
The number of Mel-frequency filters, only 80 is supported
|
130 |
+
|
131 |
+
padding: int
|
132 |
+
Number of zero samples to pad to the right
|
133 |
+
|
134 |
+
device: Optional[Union[str, torch.device]]
|
135 |
+
If given, the audio tensor is moved to this device before STFT
|
136 |
+
|
137 |
+
Returns
|
138 |
+
-------
|
139 |
+
torch.Tensor, shape = (80, n_frames)
|
140 |
+
A Tensor that contains the Mel spectrogram
|
141 |
+
"""
|
142 |
+
if not torch.is_tensor(audio):
|
143 |
+
if isinstance(audio, str):
|
144 |
+
audio = load_audio(audio)
|
145 |
+
audio = torch.from_numpy(audio)
|
146 |
+
|
147 |
+
if device is not None:
|
148 |
+
audio = audio.to(device)
|
149 |
+
if padding > 0:
|
150 |
+
audio = F.pad(audio, (0, padding))
|
151 |
+
window = torch.hann_window(N_FFT).to(audio.device)
|
152 |
+
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
|
153 |
+
magnitudes = stft[..., :-1].abs() ** 2
|
154 |
+
|
155 |
+
filters = mel_filters(audio.device, n_mels)
|
156 |
+
mel_spec = filters @ magnitudes
|
157 |
+
|
158 |
+
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
|
159 |
+
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
|
160 |
+
log_spec = (log_spec + 4.0) / 4.0
|
161 |
+
return log_spec
|