Whisper-WebUI / app.py
linuxlurak
Update app.py
8a43431 unverified
import os
import argparse
import gradio as gr
from gradio_i18n import Translate, gettext as _
import yaml
from modules.utils.paths import (FASTER_WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR, WHISPER_MODELS_DIR,
INSANELY_FAST_WHISPER_MODELS_DIR, NLLB_MODELS_DIR, DEFAULT_PARAMETERS_CONFIG_PATH,
UVR_MODELS_DIR, I18N_YAML_PATH)
from modules.utils.files_manager import load_yaml
from modules.whisper.whisper_factory import WhisperFactory
from modules.translation.nllb_inference import NLLBInference
from modules.ui.htmls import *
from modules.utils.cli_manager import str2bool
from modules.utils.youtube_manager import get_ytmetas
from modules.translation.deepl_api import DeepLAPI
from modules.whisper.data_classes import *
class App:
def __init__(self, args):
self.args = args
self.app = gr.Blocks(css=CSS, theme=self.args.theme, delete_cache=(60, 3600))
self.i18n = Translate(I18N_YAML_PATH)
self.whisper_inf = WhisperFactory.create_whisper_inference(
whisper_type=self.args.whisper_type,
whisper_model_dir=self.args.whisper_model_dir,
faster_whisper_model_dir=self.args.faster_whisper_model_dir,
insanely_fast_whisper_model_dir=self.args.insanely_fast_whisper_model_dir,
uvr_model_dir=self.args.uvr_model_dir,
output_dir=self.args.output_dir,
)
self.nllb_inf = NLLBInference(
model_dir=self.args.nllb_model_dir,
output_dir=os.path.join(self.args.output_dir, "translations")
)
self.deepl_api = DeepLAPI(
output_dir=os.path.join(self.args.output_dir, "translations")
)
self.default_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
print(f"Use \"{self.args.whisper_type}\" implementation\n"
f"Device \"{self.whisper_inf.device}\" is detected")
def create_pipeline_inputs(self):
whisper_params = self.default_params["whisper"]
vad_params = self.default_params["vad"]
diarization_params = self.default_params["diarization"]
uvr_params = self.default_params["bgm_separation"]
with gr.Row():
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value=whisper_params["model_size"],
label=_("Model"))
dd_lang = gr.Dropdown(choices=self.whisper_inf.available_langs + [AUTOMATIC_DETECTION],
value=AUTOMATIC_DETECTION if whisper_params["lang"] == AUTOMATIC_DETECTION.unwrap()
else whisper_params["lang"], label=_("Language"))
dd_file_format = gr.Dropdown(choices=["SRT", "WebVTT", "txt", "LRC"], value=whisper_params["file_format"], label=_("File Format"))
with gr.Row():
cb_translate = gr.Checkbox(value=whisper_params["is_translate"], label=_("Translate to English?"),
interactive=True)
with gr.Row():
cb_timestamp = gr.Checkbox(value=whisper_params["add_timestamp"],
label=_("Add a timestamp to the end of the filename"),
interactive=True)
with gr.Accordion(_("Advanced Parameters"), open=False):
whisper_inputs = WhisperParams.to_gradio_inputs(defaults=whisper_params, only_advanced=True,
whisper_type=self.args.whisper_type,
available_compute_types=self.whisper_inf.available_compute_types,
compute_type=self.whisper_inf.current_compute_type)
with gr.Accordion(_("Background Music Remover Filter"), open=False):
uvr_inputs = BGMSeparationParams.to_gradio_input(defaults=uvr_params,
available_models=self.whisper_inf.music_separator.available_models,
available_devices=self.whisper_inf.music_separator.available_devices,
device=self.whisper_inf.music_separator.device)
with gr.Accordion(_("Voice Detection Filter"), open=False):
vad_inputs = VadParams.to_gradio_inputs(defaults=vad_params)
with gr.Accordion(_("Diarization"), open=False):
diarization_inputs = DiarizationParams.to_gradio_inputs(defaults=diarization_params,
available_devices=self.whisper_inf.diarizer.available_device,
device=self.whisper_inf.diarizer.device)
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
pipeline_inputs = [dd_model, dd_lang, cb_translate] + whisper_inputs + vad_inputs + diarization_inputs + uvr_inputs
return (
pipeline_inputs,
dd_file_format,
cb_timestamp
)
def launch(self):
translation_params = self.default_params["translation"]
deepl_params = translation_params["deepl"]
nllb_params = translation_params["nllb"]
uvr_params = self.default_params["bgm_separation"]
with self.app:
with self.i18n:
with gr.Row():
with gr.Column():
gr.Markdown(MARKDOWN, elem_id="md_project")
with gr.Tabs():
with gr.TabItem(_("File")): # tab1
with gr.Column():
input_file = gr.Files(type="filepath", label=_("Upload File here"))
tb_input_folder = gr.Textbox(label="Input Folder Path (Optional)",
info="Optional: Specify the folder path where the input files are located, if you prefer to use local files instead of uploading them."
" Leave this field empty if you do not wish to use a local path.",
visible=self.args.colab,
value="")
pipeline_params, dd_file_format, cb_timestamp = self.create_pipeline_inputs()
with gr.Row():
btn_run = gr.Button(_("GENERATE SUBTITLE FILE"), variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label=_("Output"), scale=5)
files_subtitles = gr.Files(label=_("Downloadable output file"), scale=3, interactive=False)
btn_openfolder = gr.Button('πŸ“‚', scale=1)
params = [input_file, tb_input_folder, dd_file_format, cb_timestamp]
btn_run.click(fn=self.whisper_inf.transcribe_file,
inputs=params + pipeline_params,
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
with gr.TabItem(_("Youtube")): # tab2
with gr.Row():
tb_youtubelink = gr.Textbox(label=_("Youtube Link"))
with gr.Row(equal_height=True):
with gr.Column():
img_thumbnail = gr.Image(label=_("Youtube Thumbnail"))
with gr.Column():
tb_title = gr.Label(label=_("Youtube Title"))
tb_description = gr.Textbox(label=_("Youtube Description"), max_lines=15)
pipeline_params, dd_file_format, cb_timestamp = self.create_pipeline_inputs()
with gr.Row():
btn_run = gr.Button(_("GENERATE SUBTITLE FILE"), variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label=_("Output"), scale=5)
files_subtitles = gr.Files(label=_("Downloadable output file"), scale=3)
btn_openfolder = gr.Button('πŸ“‚', scale=1)
params = [tb_youtubelink, dd_file_format, cb_timestamp]
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
inputs=params + pipeline_params,
outputs=[tb_indicator, files_subtitles])
tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
outputs=[img_thumbnail, tb_title, tb_description])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
with gr.TabItem(_("Mic")): # tab3
with gr.Row():
mic_input = gr.Microphone(label=_("Record with Mic"), type="filepath", interactive=True)
pipeline_params, dd_file_format, cb_timestamp = self.create_pipeline_inputs()
with gr.Row():
btn_run = gr.Button(_("GENERATE SUBTITLE FILE"), variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label=_("Output"), scale=5)
files_subtitles = gr.Files(label=_("Downloadable output file"), scale=3)
btn_openfolder = gr.Button('πŸ“‚', scale=1)
params = [mic_input, dd_file_format, cb_timestamp]
btn_run.click(fn=self.whisper_inf.transcribe_mic,
inputs=params + pipeline_params,
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
with gr.TabItem(_("T2T Translation")): # tab 4
with gr.Row():
file_subs = gr.Files(type="filepath", label=_("Upload Subtitle Files to translate here"))
with gr.TabItem(_("DeepL API")): # sub tab1
with gr.Row():
tb_api_key = gr.Textbox(label=_("Your Auth Key (API KEY)"),
value=deepl_params["api_key"])
with gr.Row():
dd_source_lang = gr.Dropdown(label=_("Source Language"),
value=AUTOMATIC_DETECTION if deepl_params["source_lang"] == AUTOMATIC_DETECTION.unwrap()
else deepl_params["source_lang"],
choices=list(self.deepl_api.available_source_langs.keys()))
dd_target_lang = gr.Dropdown(label=_("Target Language"),
value=deepl_params["target_lang"],
choices=list(self.deepl_api.available_target_langs.keys()))
with gr.Row():
cb_is_pro = gr.Checkbox(label=_("Pro User?"), value=deepl_params["is_pro"])
with gr.Row():
cb_timestamp = gr.Checkbox(value=translation_params["add_timestamp"],
label=_("Add a timestamp to the end of the filename"),
interactive=True)
with gr.Row():
btn_run = gr.Button(_("TRANSLATE SUBTITLE FILE"), variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label=_("Output"), scale=5)
files_subtitles = gr.Files(label=_("Downloadable output file"), scale=3)
btn_openfolder = gr.Button('πŸ“‚', scale=1)
btn_run.click(fn=self.deepl_api.translate_deepl,
inputs=[tb_api_key, file_subs, dd_source_lang, dd_target_lang,
cb_is_pro, cb_timestamp],
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(
fn=lambda: self.open_folder(os.path.join(self.args.output_dir, "translations")),
inputs=None,
outputs=None)
with gr.TabItem(_("NLLB")): # sub tab2
with gr.Row():
dd_model_size = gr.Dropdown(label=_("Model"), value=nllb_params["model_size"],
choices=self.nllb_inf.available_models)
dd_source_lang = gr.Dropdown(label=_("Source Language"),
value=nllb_params["source_lang"],
choices=self.nllb_inf.available_source_langs)
dd_target_lang = gr.Dropdown(label=_("Target Language"),
value=nllb_params["target_lang"],
choices=self.nllb_inf.available_target_langs)
with gr.Row():
nb_max_length = gr.Number(label="Max Length Per Line", value=nllb_params["max_length"],
precision=0)
with gr.Row():
cb_timestamp = gr.Checkbox(value=translation_params["add_timestamp"],
label=_("Add a timestamp to the end of the filename"),
interactive=True)
with gr.Row():
btn_run = gr.Button(_("TRANSLATE SUBTITLE FILE"), variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label=_("Output"), scale=5)
files_subtitles = gr.Files(label=_("Downloadable output file"), scale=3)
btn_openfolder = gr.Button('πŸ“‚', scale=1)
with gr.Column():
md_vram_table = gr.HTML(NLLB_VRAM_TABLE, elem_id="md_nllb_vram_table")
btn_run.click(fn=self.nllb_inf.translate_file,
inputs=[file_subs, dd_model_size, dd_source_lang, dd_target_lang,
nb_max_length, cb_timestamp],
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(
fn=lambda: self.open_folder(os.path.join(self.args.output_dir, "translations")),
inputs=None,
outputs=None)
with gr.TabItem(_("BGM Separation")):
files_audio = gr.Files(type="filepath", label=_("Upload Audio Files to separate background music"))
dd_uvr_device = gr.Dropdown(label=_("Device"), value=self.whisper_inf.music_separator.device,
choices=self.whisper_inf.music_separator.available_devices)
dd_uvr_model_size = gr.Dropdown(label=_("Model"), value=uvr_params["model_size"],
choices=self.whisper_inf.music_separator.available_models)
nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"],
precision=0)
cb_uvr_save_file = gr.Checkbox(label=_("Save separated files to output"),
value=True, visible=False)
btn_run = gr.Button(_("SEPARATE BACKGROUND MUSIC"), variant="primary")
with gr.Column():
with gr.Row():
ad_instrumental = gr.Audio(label=_("Instrumental"), scale=8)
btn_open_instrumental_folder = gr.Button('πŸ“‚', scale=1)
with gr.Row():
ad_vocals = gr.Audio(label=_("Vocals"), scale=8)
btn_open_vocals_folder = gr.Button('πŸ“‚', scale=1)
btn_run.click(fn=self.whisper_inf.music_separator.separate_files,
inputs=[files_audio, dd_uvr_model_size, dd_uvr_device, nb_uvr_segment_size,
cb_uvr_save_file],
outputs=[ad_instrumental, ad_vocals])
btn_open_instrumental_folder.click(inputs=None,
outputs=None,
fn=lambda: self.open_folder(os.path.join(
self.args.output_dir, "UVR", "instrumental"
)))
btn_open_vocals_folder.click(inputs=None,
outputs=None,
fn=lambda: self.open_folder(os.path.join(
self.args.output_dir, "UVR", "vocals"
)))
# Launch the app with optional gradio settings
args = self.args
self.app.queue(
api_open=args.api_open
).launch(
share=args.share,
server_name=args.server_name,
server_port=args.server_port,
auth=(args.username, args.password) if args.username and args.password else None,
root_path=args.root_path,
inbrowser=args.inbrowser
)
@staticmethod
def open_folder(folder_path: str):
if os.path.exists(folder_path):
os.system(f"start {folder_path}")
else:
os.makedirs(folder_path, exist_ok=True)
print(f"The directory path {folder_path} has newly created.")
@staticmethod
def on_change_models(model_size: str):
translatable_model = ["large", "large-v1", "large-v2", "large-v3"]
if model_size not in translatable_model:
return gr.Checkbox(visible=False, value=False, interactive=False)
else:
return gr.Checkbox(visible=True, value=False, label="Translate to English?", interactive=True)
parser = argparse.ArgumentParser()
parser.add_argument('--whisper_type', type=str, default=WhisperImpl.FASTER_WHISPER.value,
choices=[item.value for item in WhisperImpl],
help='A type of the whisper implementation (Github repo name)')
parser.add_argument('--share', type=str2bool, default=False, nargs='?', const=True, help='Gradio share value')
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
parser.add_argument('--root_path', type=str, default=None, help='Gradio root path')
parser.add_argument('--username', type=str, default=None, help='Gradio authentication username')
parser.add_argument('--password', type=str, default=None, help='Gradio authentication password')
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
parser.add_argument('--colab', type=str2bool, default=False, nargs='?', const=True, help='Is colab user or not')
parser.add_argument('--api_open', type=str2bool, default=False, nargs='?', const=True,
help='Enable api or not in Gradio')
parser.add_argument('--inbrowser', type=str2bool, default=True, nargs='?', const=True,
help='Whether to automatically start Gradio app or not')
parser.add_argument('--whisper_model_dir', type=str, default=WHISPER_MODELS_DIR,
help='Directory path of the whisper model')
parser.add_argument('--faster_whisper_model_dir', type=str, default=FASTER_WHISPER_MODELS_DIR,
help='Directory path of the faster-whisper model')
parser.add_argument('--insanely_fast_whisper_model_dir', type=str,
default=INSANELY_FAST_WHISPER_MODELS_DIR,
help='Directory path of the insanely-fast-whisper model')
parser.add_argument('--diarization_model_dir', type=str, default=DIARIZATION_MODELS_DIR,
help='Directory path of the diarization model')
parser.add_argument('--nllb_model_dir', type=str, default=NLLB_MODELS_DIR,
help='Directory path of the Facebook NLLB model')
parser.add_argument('--uvr_model_dir', type=str, default=UVR_MODELS_DIR,
help='Directory path of the UVR model')
parser.add_argument('--output_dir', type=str, default=OUTPUT_DIR, help='Directory path of the outputs')
_args = parser.parse_args()
if __name__ == "__main__":
app = App(args=_args)
app.launch()