Whisper-WebUI / modules /faster_whisper_inference.py
jhj0517
edited comment
e901c63
raw
history blame
13.3 kB
import os
import tqdm
import time
import numpy as np
from typing import BinaryIO, Union, Tuple
from datetime import datetime, timedelta
import faster_whisper
import whisper
import torch
import gradio as gr
from .base_interface import BaseInterface
from modules.subtitle_manager import get_srt, get_vtt, write_file, safe_filename
from modules.youtube_manager import get_ytdata, get_ytaudio
class FasterWhisperInference(BaseInterface):
def __init__(self):
super().__init__()
self.current_model_size = None
self.model = None
self.available_models = whisper.available_models()
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
self.translatable_models = ["large", "large-v1", "large-v2"]
self.default_beam_size = 5
self.device = "cuda" if torch.cuda.is_available() else "cpu"
def transcribe_file(self,
fileobjs: list,
model_size: str,
lang: str,
subformat: str,
istranslate: bool,
add_timestamp: bool,
progress=gr.Progress()
) -> str:
"""
Write subtitle file from Files
Parameters
----------
fileobjs: list
List of files to transcribe from gr.Files()
model_size: str
Whisper model size from gr.Dropdown()
lang: str
Source language of the file to transcribe from gr.Dropdown()
subformat: str
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
istranslate: bool
Boolean value from gr.Checkbox() that determines whether to translate to English.
It's Whisper's feature to translate speech from another language directly into English end-to-end.
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
progress: gr.Progress
Indicator to show progress directly in gradio.
Returns
----------
String to return to gr.Textbox()
"""
try:
if model_size != self.current_model_size or self.model is None:
self.initialize_model(model_size=model_size, progress=progress)
if lang == "Automatic Detection":
lang = None
files_info = {}
for fileobj in fileobjs:
transcribed_segments, time_for_task = self.transcribe(
audio=fileobj.name,
lang=lang,
istranslate=istranslate,
progress=progress
)
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
file_name = safe_filename(file_name)
subtitle = self.generate_and_write_subtitle(
file_name=file_name,
transcribed_segments=transcribed_segments,
add_timestamp=add_timestamp,
subformat=subformat
)
files_info[file_name] = {"subtitle": subtitle, "time_for_task": time_for_task}
total_result = ''
total_time = 0
for file_name, info in files_info.items():
total_result += '------------------------------------\n'
total_result += f'{file_name}\n\n'
total_result += f'{info["subtitle"]}'
total_time += info["time_for_task"]
return f"Done in {self.format_time(total_time)}! Subtitle is in the outputs folder.\n\n{total_result}"
except Exception as e:
print(f"Error transcribing file on line {e}")
finally:
self.release_cuda_memory()
self.remove_input_files([fileobj.name for fileobj in fileobjs])
def transcribe_youtube(self,
youtubelink: str,
model_size: str,
lang: str,
subformat: str,
istranslate: bool,
add_timestamp: bool,
progress=gr.Progress()
) -> str:
"""
Write subtitle file from Youtube
Parameters
----------
youtubelink: str
Link of Youtube to transcribe from gr.Textbox()
model_size: str
Whisper model size from gr.Dropdown()
lang: str
Source language of the file to transcribe from gr.Dropdown()
subformat: str
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
istranslate: bool
Boolean value from gr.Checkbox() that determines whether to translate to English.
It's Whisper's feature to translate speech from another language directly into English end-to-end.
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
progress: gr.Progress
Indicator to show progress directly in gradio.
Returns
----------
String to return to gr.Textbox()
"""
try:
if model_size != self.current_model_size or self.model is None:
self.initialize_model(model_size=model_size, progress=progress)
if lang == "Automatic Detection":
lang = None
progress(0, desc="Loading Audio from Youtube..")
yt = get_ytdata(youtubelink)
audio = get_ytaudio(yt)
transcribed_segments, time_for_task = self.transcribe(
audio=audio,
lang=lang,
istranslate=istranslate,
progress=progress
)
progress(1, desc="Completed!")
file_name = safe_filename(yt.title)
subtitle = self.generate_and_write_subtitle(
file_name=file_name,
transcribed_segments=transcribed_segments,
add_timestamp=add_timestamp,
subformat=subformat
)
return f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
except Exception as e:
return f"Error: {str(e)}"
finally:
yt = get_ytdata(youtubelink)
file_path = get_ytaudio(yt)
self.release_cuda_memory()
self.remove_input_files([file_path])
def transcribe_mic(self,
micaudio: str,
model_size: str,
lang: str,
subformat: str,
istranslate: bool,
progress=gr.Progress()
) -> str:
"""
Write subtitle file from microphone
Parameters
----------
micaudio: str
Audio file path from gr.Microphone()
model_size: str
Whisper model size from gr.Dropdown()
lang: str
Source language of the file to transcribe from gr.Dropdown()
subformat: str
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
istranslate: bool
Boolean value from gr.Checkbox() that determines whether to translate to English.
It's Whisper's feature to translate speech from another language directly into English end-to-end.
progress: gr.Progress
Indicator to show progress directly in gradio.
Returns
----------
String to return to gr.Textbox()
"""
try:
if model_size != self.current_model_size or self.model is None:
self.initialize_model(model_size=model_size, progress=progress)
if lang == "Automatic Detection":
lang = None
progress(0, desc="Loading Audio..")
transcribed_segments, time_for_task = self.transcribe(
audio=micaudio,
lang=lang,
istranslate=istranslate,
progress=progress
)
progress(1, desc="Completed!")
subtitle = self.generate_and_write_subtitle(
file_name="Mic",
transcribed_segments=transcribed_segments,
add_timestamp=True,
subformat=subformat
)
return f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
except Exception as e:
return f"Error: {str(e)}"
finally:
self.release_cuda_memory()
self.remove_input_files([micaudio])
def transcribe(self,
audio: Union[str, BinaryIO, np.ndarray],
lang: str,
istranslate: bool,
progress: gr.Progress
) -> Tuple[list, float]:
"""
transcribe method for faster-whisper.
Parameters
----------
audio: Union[str, BinaryIO, np.ndarray]
Audio path or file binary or Audio numpy array
lang: str
Source language of the file to transcribe from gr.Dropdown()
istranslate: bool
Boolean value from gr.Checkbox() that determines whether to translate to English.
It's Whisper's feature to translate speech from another language directly into English end-to-end.
progress: gr.Progress
Indicator to show progress directly in gradio.
Returns
----------
segments_result: list[dict]
list of dicts that includes start, end timestamps and transcribed text
elapsed_time: float
elapsed time for transcription
"""
start_time = time.time()
segments, info = self.model.transcribe(
audio=audio,
language=lang,
beam_size=self.default_beam_size,
task="translate" if istranslate and self.current_model_size in self.translatable_models else "transcribe"
)
progress(0, desc="Loading audio..")
total_frames = self.get_total_frames(audio=audio, progress=progress)
segments_result = []
for segment in segments:
progress(segment.seek / total_frames, desc="Transcribing..")
segments_result.append({
"start": segment.start,
"end": segment.end,
"text": segment.text
})
elapsed_time = time.time() - start_time
return segments_result, elapsed_time
def initialize_model(self,
model_size: str,
progress: gr.Progress
):
"""
Initialize model if it doesn't match with current model size
"""
progress(0, desc="Initializing Model..")
self.current_model_size = model_size
self.model = faster_whisper.WhisperModel(
device=self.device,
model_size_or_path=model_size,
download_root=os.path.join("models", "Whisper", "faster-whisper"),
compute_type="float16"
)
def get_total_frames(self,
audio: Union[str, BinaryIO],
progress: gr.Progress
) -> float:
"""
This method is only for tracking the progress.
Returns total frames to track progress.
"""
progress(0, desc="Loading audio..")
decoded_audio = faster_whisper.decode_audio(audio)
features = self.model.feature_extractor(decoded_audio)
content_frames = features.shape[-1] - self.model.feature_extractor.nb_max_frames
return content_frames
@staticmethod
def generate_and_write_subtitle(file_name: str,
transcribed_segments: list,
add_timestamp: bool,
subformat: str,
) -> str:
"""
This method writes subtitle file and returns str to gr.Textbox
"""
timestamp = datetime.now().strftime("%m%d%H%M%S")
if add_timestamp:
output_path = os.path.join("outputs", f"{file_name}-{timestamp}")
else:
output_path = os.path.join("outputs", f"{file_name}")
if subformat == "SRT":
subtitle = get_srt(transcribed_segments)
write_file(subtitle, f"{output_path}.srt")
elif subformat == "WebVTT":
subtitle = get_vtt(transcribed_segments)
write_file(subtitle, f"{output_path}.vtt")
return subtitle
@staticmethod
def format_time(elapsed_time: float) -> str:
hours, rem = divmod(elapsed_time, 3600)
minutes, seconds = divmod(rem, 60)
time_str = ""
if hours:
time_str += f"{hours} hours "
if minutes:
time_str += f"{minutes} minutes "
seconds = round(seconds)
time_str += f"{seconds} seconds"
return time_str.strip()