Whisper-WebUI / modules /whisper_data_class.py
jhj0517
add `initial_prompt`
78c9bd5
raw
history blame
3.37 kB
from dataclasses import dataclass, fields
import gradio as gr
from typing import Optional
@dataclass
class WhisperGradioComponents:
model_size: gr.Dropdown
lang: gr.Dropdown
is_translate: gr.Checkbox
beam_size: gr.Number
log_prob_threshold: gr.Number
no_speech_threshold: gr.Number
compute_type: gr.Dropdown
best_of: gr.Number
patience: gr.Number
condition_on_previous_text: gr.Checkbox
initial_prompt: gr.Textbox
"""
A data class to pass Gradio components to the function before Gradio pre-processing.
See this documentation for more information about Gradio pre-processing: https://www.gradio.app/docs/components
Attributes
----------
model_size: gr.Dropdown
Whisper model size.
lang: gr.Dropdown
Source language of the file to transcribe.
is_translate: gr.Checkbox
Boolean value that determines whether to translate to English.
It's Whisper's feature to translate speech from another language directly into English end-to-end.
beam_size: gr.Number
Int value that is used for decoding option.
log_prob_threshold: gr.Number
If the average log probability over sampled tokens is below this value, treat as failed.
no_speech_threshold: gr.Number
If the no_speech probability is higher than this value AND
the average log probability over sampled tokens is below `log_prob_threshold`,
consider the segment as silent.
compute_type: gr.Dropdown
compute type for transcription.
see more info : https://opennmt.net/CTranslate2/quantization.html
best_of: gr.Number
Number of candidates when sampling with non-zero temperature.
patience: gr.Number
Beam search patience factor.
condition_on_previous_text: gr.Checkbox
if True, the previous output of the model is provided as a prompt for the next window;
disabling may make the text inconsistent across windows, but the model becomes less prone to
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.
initial_prompt: gr.Textbox
Optional text to provide as a prompt for the first window. This can be used to provide, or
"prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns
to make it more likely to predict those word correctly.
"""
def to_list(self) -> list:
"""
Converts the data class attributes into a list, to pass parameters to a
button click event function before Gradio pre-processing.
Returns
----------
A list of Gradio components
"""
return [getattr(self, f.name) for f in fields(self)]
@dataclass
class WhisperValues:
model_size: str
lang: str
is_translate: bool
beam_size: int
log_prob_threshold: float
no_speech_threshold: float
compute_type: str
best_of: int
patience: float
condition_on_previous_text: bool
initial_prompt: Optional[str]
"""
A data class to use Whisper parameters in your function after Gradio pre-processing.
See this documentation for more information about Gradio pre-processing: : https://www.gradio.app/docs/components
"""